Cargando…

High-Crystallinity BiOCl Nanosheets as Efficient Photocatalysts for Norfloxacin Antibiotic Degradation

Semiconductor photocatalysts are essential materials in the field of environmental remediation. Various photocatalysts have been developed to solve the contamination problem of norfloxacin in water pollution. Among them, a crucial ternary photocatalyst, BiOCl, has attracted extensive attention due t...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Dongxue, Li, Mingxia, Liao, Lijun, Guo, Liping, Liu, Haixia, Wang, Bo, Li, Zhenzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303594/
https://www.ncbi.nlm.nih.gov/pubmed/37368271
http://dx.doi.org/10.3390/nano13121841
Descripción
Sumario:Semiconductor photocatalysts are essential materials in the field of environmental remediation. Various photocatalysts have been developed to solve the contamination problem of norfloxacin in water pollution. Among them, a crucial ternary photocatalyst, BiOCl, has attracted extensive attention due to its unique layered structure. In this work, high-crystallinity BiOCl nanosheets were prepared using a one-step hydrothermal method. The obtained BiOCl nanosheets showed good photocatalytic degradation performance, and the degradation rate of highly toxic norfloxacin using BiOCl reached 84% within 180 min. The internal structure and surface chemical state of BiOCl were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance (UV-vis), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectra (XPS), and photoelectric techniques. The higher crystallinity of BiOCl closely aligned molecules with each other, which improved the separation efficiency of photogenerated charges and showed high degradation efficiency for norfloxacin antibiotics. Furthermore, the obtained BiOCl nanosheets possess decent photocatalytic stability and recyclability.