Cargando…
Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303651/ https://www.ncbi.nlm.nih.gov/pubmed/37375388 http://dx.doi.org/10.3390/molecules28124833 |
_version_ | 1785065326871838720 |
---|---|
author | Mu, Zi-Chun Tan, Ya-Lan Liu, Jie Zhang, Ben-Gong Shi, Ya-Zhou |
author_facet | Mu, Zi-Chun Tan, Ya-Lan Liu, Jie Zhang, Ben-Gong Shi, Ya-Zhou |
author_sort | Mu, Zi-Chun |
collection | PubMed |
description | DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences. |
format | Online Article Text |
id | pubmed-10303651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103036512023-06-29 Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding Mu, Zi-Chun Tan, Ya-Lan Liu, Jie Zhang, Ben-Gong Shi, Ya-Zhou Molecules Review DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences. MDPI 2023-06-17 /pmc/articles/PMC10303651/ /pubmed/37375388 http://dx.doi.org/10.3390/molecules28124833 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Mu, Zi-Chun Tan, Ya-Lan Liu, Jie Zhang, Ben-Gong Shi, Ya-Zhou Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title | Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title_full | Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title_fullStr | Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title_full_unstemmed | Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title_short | Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding |
title_sort | computational modeling of dna 3d structures: from dynamics and mechanics to folding |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303651/ https://www.ncbi.nlm.nih.gov/pubmed/37375388 http://dx.doi.org/10.3390/molecules28124833 |
work_keys_str_mv | AT muzichun computationalmodelingofdna3dstructuresfromdynamicsandmechanicstofolding AT tanyalan computationalmodelingofdna3dstructuresfromdynamicsandmechanicstofolding AT liujie computationalmodelingofdna3dstructuresfromdynamicsandmechanicstofolding AT zhangbengong computationalmodelingofdna3dstructuresfromdynamicsandmechanicstofolding AT shiyazhou computationalmodelingofdna3dstructuresfromdynamicsandmechanicstofolding |