Cargando…
Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles—Transferability towards Bulk
We analyse the efficacy of machine learning (ML) interatomic potentials (IP) in modelling gold (Au) nanoparticles. We have explored the transferability of these ML models to larger systems and established simulation times and size thresholds necessary for accurate interatomic potentials. To achieve...
Autores principales: | Fronzi, Marco, Amos, Roger D., Kobayashi, Rika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303715/ https://www.ncbi.nlm.nih.gov/pubmed/37368262 http://dx.doi.org/10.3390/nano13121832 |
Ejemplares similares
-
Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles
por: Fronzi, Marco, et al.
Publicado: (2022) -
Transferability of interatomic potentials for silicene
por: Maździarz, Marcin
Publicado: (2023) -
Machine Learning
Interatomic Potentials and Long-Range
Physics
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver
por: Rassoulinejad-Mousavi, Seyed Moein, et al.
Publicado: (2018) -
Interatomic potentials
por: Torrens, Iam
Publicado: (1972)