Cargando…

A potential cost of evolving epibatidine resistance in poison frogs

BACKGROUND: Some dendrobatid poison frogs sequester the toxin epibatidine as a defense against predators. We previously identified an amino acid substitution (S108C) at a highly conserved site in a nicotinic acetylcholine receptor β2 subunit of dendrobatid frogs that decreases sensitivity to epibati...

Descripción completa

Detalles Bibliográficos
Autores principales: York, Julia M., Borghese, Cecilia M., George, Andrew A., Cannatella, David C., Zakon, Harold H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303791/
https://www.ncbi.nlm.nih.gov/pubmed/37370119
http://dx.doi.org/10.1186/s12915-023-01637-8
Descripción
Sumario:BACKGROUND: Some dendrobatid poison frogs sequester the toxin epibatidine as a defense against predators. We previously identified an amino acid substitution (S108C) at a highly conserved site in a nicotinic acetylcholine receptor β2 subunit of dendrobatid frogs that decreases sensitivity to epibatidine in the brain-expressing α4β2 receptor. Introduction of S108C to the orthologous high-sensitivity human receptor similarly decreased sensitivity to epibatidine but also decreased sensitivity to acetylcholine, a potential cost if this were to occur in dendrobatids. This decrease in the acetylcholine sensitivity manifested as a biphasic acetylcholine concentration–response curve consistent with the addition of low-sensitivity receptors. Surprisingly, the addition of the β2 S108C into the α4β2 receptor of the dendrobatid Epipedobates anthonyi did not change acetylcholine sensitivity, appearing cost-free. We proposed that toxin-bearing dendrobatids may have additional amino acid substitutions protecting their receptors from alterations in acetylcholine sensitivity. To test this, in the current study, we compared the dendrobatid receptor to its homologs from two non-dendrobatid frogs. RESULTS: The introduction of S108C into the α4β2 receptors of two non-dendrobatid frogs also does not affect acetylcholine sensitivity suggesting no additional dendrobatid-specific substitutions. However, S108C decreased the magnitude of neurotransmitter-induced currents in Epipedobates and the non-dendrobatid frogs. We confirmed that decreased current resulted from fewer receptors in the plasma membrane in Epipedobates using radiolabeled antibodies against the receptors. To test whether S108C alteration of acetylcholine sensitivity in the human receptor was due to (1) adding low-sensitivity binding sites by changing stoichiometry or (2) converting existing high- to low-sensitivity binding sites with no stoichiometric alteration, we made concatenated α4β2 receptors in stoichiometry with only high-sensitivity sites. S108C substitutions decreased maximal current and number of immunolabeled receptors but no longer altered acetylcholine sensitivity. CONCLUSIONS: The most parsimonious explanation of our current and previous work is that the S108C substitution renders the β2 subunit less efficient in assembling/trafficking, thereby decreasing the number of receptors in the plasma membrane. Thus, while β2 S108C protects dendrobatids against sequestered epibatidine, it incurs a potential physiological cost of disrupted α4β2 receptor function. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-023-01637-8.