Cargando…
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
Graph convolutional networks are widely used in skeleton-based action recognition because of their good fitting ability to non-Euclidean data. While conventional multi-scale temporal convolution uses several fixed-size convolution kernels or dilation rates at each layer of the network, we argue that...
Autores principales: | Zhang, Haiping, Zhang, Xinhao, Yu, Dongjin, Guan, Liming, Wang, Dongjing, Zhou, Fuxing, Zhang, Wanjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303820/ https://www.ncbi.nlm.nih.gov/pubmed/37420580 http://dx.doi.org/10.3390/s23125414 |
Ejemplares similares
-
Whole and Part Adaptive Fusion Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Zuo, Qi, et al.
Publicado: (2020) -
Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
por: Yang, Wenjie, et al.
Publicado: (2021) -
Adaptive Attention Memory Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Liu, Di, et al.
Publicado: (2021) -
Fast Temporal Graph Convolutional Model for Skeleton-Based Action Recognition
por: Nan, Mihai, et al.
Publicado: (2022) -
Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
por: Yang, Huaigang, et al.
Publicado: (2022)