Cargando…
(18)F‑FDG PET/CT based radiomics features improve prediction of prognosis: multiple machine learning algorithms and multimodality applications for multiple myeloma
PURPOSE: Multiple myeloma (MM), the second most hematological malignancy, have been studied extensively in the prognosis of the clinical parameters, however there are only a few studies have discussed the role of dual modalities and multiple algorithms of (18)F-FDG ((18)F-fluorodeoxyglucose) PET/CT...
Autores principales: | Zhong, Haoshu, Huang, Delong, Wu, Junhao, Chen, Xiaomin, Chen, Yue, Huang, Chunlan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303834/ https://www.ncbi.nlm.nih.gov/pubmed/37370013 http://dx.doi.org/10.1186/s12880-023-01033-2 |
Ejemplares similares
-
Application of 18F-FDG PET-CT Images Based Radiomics in Identifying Vertebral Multiple Myeloma and Bone Metastases
por: Jin, Zhicheng, et al.
Publicado: (2022) -
PET/CT in Multiple Myeloma: Beyond FDG
por: Matteucci, Federica, et al.
Publicado: (2021) -
PET/CT F18-FDG with soft tissue plasmacytomas in multiple myeloma
por: Martí, Alejandro, et al.
Publicado: (2021) -
Comparison of [68Ga]-FAPI PET/CT and [18F]-FDG PET/CT in Multiple Myeloma: Clinical Experience
por: Elboga, Umut, et al.
Publicado: (2022) -
Machine Learning Model Based on Optimized Radiomics Feature from (18)F-FDG-PET/CT and Clinical Characteristics Predicts Prognosis of Multiple Myeloma: A Preliminary Study
por: Ni, Beiwen, et al.
Publicado: (2023)