Cargando…
ExplaiNN: interpretable and transparent neural networks for genomics
Deep learning models such as convolutional neural networks (CNNs) excel in genomic tasks but lack interpretability. We introduce ExplaiNN, which combines the expressiveness of CNNs with the interpretability of linear models. ExplaiNN can predict TF binding, chromatin accessibility, and de novo motif...
Autores principales: | Novakovsky, Gherman, Fornes, Oriol, Saraswat, Manu, Mostafavi, Sara, Wasserman, Wyeth W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303849/ https://www.ncbi.nlm.nih.gov/pubmed/37370113 http://dx.doi.org/10.1186/s13059-023-02985-y |
Ejemplares similares
-
Biologically relevant transfer learning improves transcription factor binding prediction
por: Novakovsky, Gherman, et al.
Publicado: (2021) -
In silico discovery of small molecules for efficient stem cell differentiation into definitive endoderm
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
Gene expression models based on transcription factor binding events confer insight into functional cis-regulatory variants
por: Shi, Wenqiang, et al.
Publicado: (2019) -
Evaluating the impact of single nucleotide variants on transcription factor binding
por: Shi, Wenqiang, et al.
Publicado: (2016) -
Deep neural networks for interpreting RNA-binding protein target preferences
por: Ghanbari, Mahsa, et al.
Publicado: (2020)