Cargando…
Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains
Al-Ti-C-(Ce) grain refiners were prepared by combining in-situ reaction, hot extrusion, and adding CeO(2). The effects of second phase TiC particle size and distribution, extrusion ratio, and Ce addition on the grain-refining performance of grain refiners were investigated. The results show that abo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303927/ https://www.ncbi.nlm.nih.gov/pubmed/37374664 http://dx.doi.org/10.3390/ma16124481 |
_version_ | 1785065390861189120 |
---|---|
author | Bi, Qianwen Luo, Xiaoxu Guo, Lu Zuo, Xiaoqing Huang, Bei Yi, Jianhong Zhou, Yun |
author_facet | Bi, Qianwen Luo, Xiaoxu Guo, Lu Zuo, Xiaoqing Huang, Bei Yi, Jianhong Zhou, Yun |
author_sort | Bi, Qianwen |
collection | PubMed |
description | Al-Ti-C-(Ce) grain refiners were prepared by combining in-situ reaction, hot extrusion, and adding CeO(2). The effects of second phase TiC particle size and distribution, extrusion ratio, and Ce addition on the grain-refining performance of grain refiners were investigated. The results show that about 10 nm TiC particles are dispersed on the surface and inside of 100–200 nm Ti particles by in-situ reaction. The Al-Ti-C grain refiners, which are made, by hot extrusion, of a mixture of in-situ reaction Ti/TiC composite powder and Al powder, increase the effective nucleation phase of α-Al and hinder grain growth due to the fine and dispersed TiC; this results in the average size of pure aluminum grains to decrease from 1912.4 μm to 504.8 μm (adding 1 wt.% Al-Ti-C grain refiner). Additionally, with the increase of the extrusion ratio from 13 to 30, the average size of pure aluminum grains decreases further to 470.8 μm. This is because the micropores in the matrix of grain refiners are reduced, and the nano-TiC aggregates are dispersed with the fragmentation of Ti particles, resulting in a sufficient Al-Ti reaction and an enhanced nucleation effect of nano-TiC. Furthermore, Al-Ti-C-Ce grain refiners were prepared by adding CeO(2). Under the conditions of holding for 3–5 min and adding a 5.5 wt.% Al-Ti-C-Ce grain refiner, the average size of pure aluminum grains is reduced to 48.4–48.8 μm. The reason for the excellent grain-refining and good anti-fading performance of the Al-Ti-C-Ce grain refiner is presumedly related to the Ti(2)Al(20)Ce rare earth phases and [Ce] atoms, which hinder agglomeration, precipitation, and dissolution of the TiC and TiAl(3) particles. |
format | Online Article Text |
id | pubmed-10303927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103039272023-06-29 Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains Bi, Qianwen Luo, Xiaoxu Guo, Lu Zuo, Xiaoqing Huang, Bei Yi, Jianhong Zhou, Yun Materials (Basel) Article Al-Ti-C-(Ce) grain refiners were prepared by combining in-situ reaction, hot extrusion, and adding CeO(2). The effects of second phase TiC particle size and distribution, extrusion ratio, and Ce addition on the grain-refining performance of grain refiners were investigated. The results show that about 10 nm TiC particles are dispersed on the surface and inside of 100–200 nm Ti particles by in-situ reaction. The Al-Ti-C grain refiners, which are made, by hot extrusion, of a mixture of in-situ reaction Ti/TiC composite powder and Al powder, increase the effective nucleation phase of α-Al and hinder grain growth due to the fine and dispersed TiC; this results in the average size of pure aluminum grains to decrease from 1912.4 μm to 504.8 μm (adding 1 wt.% Al-Ti-C grain refiner). Additionally, with the increase of the extrusion ratio from 13 to 30, the average size of pure aluminum grains decreases further to 470.8 μm. This is because the micropores in the matrix of grain refiners are reduced, and the nano-TiC aggregates are dispersed with the fragmentation of Ti particles, resulting in a sufficient Al-Ti reaction and an enhanced nucleation effect of nano-TiC. Furthermore, Al-Ti-C-Ce grain refiners were prepared by adding CeO(2). Under the conditions of holding for 3–5 min and adding a 5.5 wt.% Al-Ti-C-Ce grain refiner, the average size of pure aluminum grains is reduced to 48.4–48.8 μm. The reason for the excellent grain-refining and good anti-fading performance of the Al-Ti-C-Ce grain refiner is presumedly related to the Ti(2)Al(20)Ce rare earth phases and [Ce] atoms, which hinder agglomeration, precipitation, and dissolution of the TiC and TiAl(3) particles. MDPI 2023-06-20 /pmc/articles/PMC10303927/ /pubmed/37374664 http://dx.doi.org/10.3390/ma16124481 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bi, Qianwen Luo, Xiaoxu Guo, Lu Zuo, Xiaoqing Huang, Bei Yi, Jianhong Zhou, Yun Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title | Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title_full | Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title_fullStr | Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title_full_unstemmed | Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title_short | Effects of In-Situ Reaction, Extrusion Ratio and CeO(2) on the Performance of Al-Ti-C-(Ce) Grain Refiners for Refining Pure Aluminum Grains |
title_sort | effects of in-situ reaction, extrusion ratio and ceo(2) on the performance of al-ti-c-(ce) grain refiners for refining pure aluminum grains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303927/ https://www.ncbi.nlm.nih.gov/pubmed/37374664 http://dx.doi.org/10.3390/ma16124481 |
work_keys_str_mv | AT biqianwen effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT luoxiaoxu effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT guolu effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT zuoxiaoqing effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT huangbei effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT yijianhong effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains AT zhouyun effectsofinsitureactionextrusionratioandceo2ontheperformanceofalticcegrainrefinersforrefiningpurealuminumgrains |