Cargando…

Multilingual RECIST classification of radiology reports using supervised learning

OBJECTIVES: The objective of this study is the exploration of Artificial Intelligence and Natural Language Processing techniques to support the automatic assignment of the four Response Evaluation Criteria in Solid Tumors (RECIST) scales based on radiology reports. We also aim at evaluating how lang...

Descripción completa

Detalles Bibliográficos
Autores principales: Mottin, Luc, Goldman, Jean-Philippe, Jäggli, Christoph, Achermann, Rita, Gobeill, Julien, Knafou, Julien, Ehrsam, Julien, Wicky, Alexandre, Gérard, Camille L., Schwenk, Tanja, Charrier, Mélinda, Tsantoulis, Petros, Lovis, Christian, Leichtle, Alexander, Kiessling, Michael K., Michielin, Olivier, Pradervand, Sylvain, Foufi, Vasiliki, Ruch, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303934/
https://www.ncbi.nlm.nih.gov/pubmed/37388252
http://dx.doi.org/10.3389/fdgth.2023.1195017
_version_ 1785065392508502016
author Mottin, Luc
Goldman, Jean-Philippe
Jäggli, Christoph
Achermann, Rita
Gobeill, Julien
Knafou, Julien
Ehrsam, Julien
Wicky, Alexandre
Gérard, Camille L.
Schwenk, Tanja
Charrier, Mélinda
Tsantoulis, Petros
Lovis, Christian
Leichtle, Alexander
Kiessling, Michael K.
Michielin, Olivier
Pradervand, Sylvain
Foufi, Vasiliki
Ruch, Patrick
author_facet Mottin, Luc
Goldman, Jean-Philippe
Jäggli, Christoph
Achermann, Rita
Gobeill, Julien
Knafou, Julien
Ehrsam, Julien
Wicky, Alexandre
Gérard, Camille L.
Schwenk, Tanja
Charrier, Mélinda
Tsantoulis, Petros
Lovis, Christian
Leichtle, Alexander
Kiessling, Michael K.
Michielin, Olivier
Pradervand, Sylvain
Foufi, Vasiliki
Ruch, Patrick
author_sort Mottin, Luc
collection PubMed
description OBJECTIVES: The objective of this study is the exploration of Artificial Intelligence and Natural Language Processing techniques to support the automatic assignment of the four Response Evaluation Criteria in Solid Tumors (RECIST) scales based on radiology reports. We also aim at evaluating how languages and institutional specificities of Swiss teaching hospitals are likely to affect the quality of the classification in French and German languages. METHODS: In our approach, 7 machine learning methods were evaluated to establish a strong baseline. Then, robust models were built, fine-tuned according to the language (French and German), and compared with the expert annotation. RESULTS: The best strategies yield average F1-scores of 90% and 86% respectively for the 2-classes (Progressive/Non-progressive) and the 4-classes (Progressive Disease, Stable Disease, Partial Response, Complete Response) RECIST classification tasks. CONCLUSIONS: These results are competitive with the manual labeling as measured by Matthew's correlation coefficient and Cohen's Kappa (79% and 76%). On this basis, we confirm the capacity of specific models to generalize on new unseen data and we assess the impact of using Pre-trained Language Models (PLMs) on the accuracy of the classifiers.
format Online
Article
Text
id pubmed-10303934
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-103039342023-06-29 Multilingual RECIST classification of radiology reports using supervised learning Mottin, Luc Goldman, Jean-Philippe Jäggli, Christoph Achermann, Rita Gobeill, Julien Knafou, Julien Ehrsam, Julien Wicky, Alexandre Gérard, Camille L. Schwenk, Tanja Charrier, Mélinda Tsantoulis, Petros Lovis, Christian Leichtle, Alexander Kiessling, Michael K. Michielin, Olivier Pradervand, Sylvain Foufi, Vasiliki Ruch, Patrick Front Digit Health Digital Health OBJECTIVES: The objective of this study is the exploration of Artificial Intelligence and Natural Language Processing techniques to support the automatic assignment of the four Response Evaluation Criteria in Solid Tumors (RECIST) scales based on radiology reports. We also aim at evaluating how languages and institutional specificities of Swiss teaching hospitals are likely to affect the quality of the classification in French and German languages. METHODS: In our approach, 7 machine learning methods were evaluated to establish a strong baseline. Then, robust models were built, fine-tuned according to the language (French and German), and compared with the expert annotation. RESULTS: The best strategies yield average F1-scores of 90% and 86% respectively for the 2-classes (Progressive/Non-progressive) and the 4-classes (Progressive Disease, Stable Disease, Partial Response, Complete Response) RECIST classification tasks. CONCLUSIONS: These results are competitive with the manual labeling as measured by Matthew's correlation coefficient and Cohen's Kappa (79% and 76%). On this basis, we confirm the capacity of specific models to generalize on new unseen data and we assess the impact of using Pre-trained Language Models (PLMs) on the accuracy of the classifiers. Frontiers Media S.A. 2023-06-14 /pmc/articles/PMC10303934/ /pubmed/37388252 http://dx.doi.org/10.3389/fdgth.2023.1195017 Text en © 2023 Mottin, Goldman, Jäggli, Achermann, Gobeill, Knafou, Ehrsam, Wicky, Gérard, Schwenk, Charrier, Tsantoulis, Lovis, Leichtle, Kiessling, Michielin, Pradervand, Foufi and Ruch. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Digital Health
Mottin, Luc
Goldman, Jean-Philippe
Jäggli, Christoph
Achermann, Rita
Gobeill, Julien
Knafou, Julien
Ehrsam, Julien
Wicky, Alexandre
Gérard, Camille L.
Schwenk, Tanja
Charrier, Mélinda
Tsantoulis, Petros
Lovis, Christian
Leichtle, Alexander
Kiessling, Michael K.
Michielin, Olivier
Pradervand, Sylvain
Foufi, Vasiliki
Ruch, Patrick
Multilingual RECIST classification of radiology reports using supervised learning
title Multilingual RECIST classification of radiology reports using supervised learning
title_full Multilingual RECIST classification of radiology reports using supervised learning
title_fullStr Multilingual RECIST classification of radiology reports using supervised learning
title_full_unstemmed Multilingual RECIST classification of radiology reports using supervised learning
title_short Multilingual RECIST classification of radiology reports using supervised learning
title_sort multilingual recist classification of radiology reports using supervised learning
topic Digital Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303934/
https://www.ncbi.nlm.nih.gov/pubmed/37388252
http://dx.doi.org/10.3389/fdgth.2023.1195017
work_keys_str_mv AT mottinluc multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT goldmanjeanphilippe multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT jagglichristoph multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT achermannrita multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT gobeilljulien multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT knafoujulien multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT ehrsamjulien multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT wickyalexandre multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT gerardcamillel multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT schwenktanja multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT charriermelinda multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT tsantoulispetros multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT lovischristian multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT leichtlealexander multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT kiesslingmichaelk multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT michielinolivier multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT pradervandsylvain multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT foufivasiliki multilingualrecistclassificationofradiologyreportsusingsupervisedlearning
AT ruchpatrick multilingualrecistclassificationofradiologyreportsusingsupervisedlearning