Cargando…

O-Polysaccharides of LPS Modulate E. coli Uptake by Acanthamoeba castellanii

Protozoan grazing is a major cause of bacterial mortality and controls bacterial population size and composition in the natural environment. To enhance their survival, bacteria evolved many defense strategies to avoid grazing by protists. Cell wall modification is one of the defense strategies that...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ying, Koudelka, Gerald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304059/
https://www.ncbi.nlm.nih.gov/pubmed/37374879
http://dx.doi.org/10.3390/microorganisms11061377
Descripción
Sumario:Protozoan grazing is a major cause of bacterial mortality and controls bacterial population size and composition in the natural environment. To enhance their survival, bacteria evolved many defense strategies to avoid grazing by protists. Cell wall modification is one of the defense strategies that helps bacteria escape from recognition and/or internalization by its predators. Lipopolysaccharide (LPS) is the major component of Gram-negative bacterial cell wall. LPS is divided into three regions: lipid A, oligosaccharide core and O-specific polysaccharide. O-polysaccharide as the outermost region of E. coli LPS provides protection against predation by Acanthamoeba castellanii; however, the characteristics of O-polysaccharide contribute to this protection remain unknown. Here, we investigate how length, structure and composition of LPS affect E. coli recognition and internalization by A. castellanii. We found that length of O-antigen does not play a significant role in regulating bacterial recognition by A. castellanii. However, the composition and structure of O-polysaccharide play important roles in providing resistance to A. castellanii predation.