Cargando…
Use of Geopolymer and Carbon Fiber-Reinforced Polymer for Repairing Reinforced Concrete Deck Soffit
This study aimed to assess the feasibility of utilizing geopolymer for repairing reinforced concrete beams. Three types of beam specimens were fabricated: benchmark specimens without any grooves, rectangular-grooved beams, and square-grooved beams. The repair materials employed included geopolymer m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304092/ https://www.ncbi.nlm.nih.gov/pubmed/37374642 http://dx.doi.org/10.3390/ma16124459 |
Sumario: | This study aimed to assess the feasibility of utilizing geopolymer for repairing reinforced concrete beams. Three types of beam specimens were fabricated: benchmark specimens without any grooves, rectangular-grooved beams, and square-grooved beams. The repair materials employed included geopolymer material, and epoxy resin mortar, while carbon fiber sheets were used as reinforcement in select cases. The repair materials were applied to the rectangular and square-grooved specimens, with the carbon fiber sheets attached to the tension side of the specimens. To evaluate the flexural strength of the concrete specimens, a third-point loading test was conducted. The test results indicated that the geopolymer exhibited higher compressive strength and shrinkage rate compared to the epoxy resin mortar. Furthermore, the specimens reinforced with carbon fiber sheets demonstrated even greater strength than the benchmark specimens. In terms of flexural strength under cyclic third-point loading tests, the carbon fiber-reinforced specimens exhibited the ability to withstand over 200 cycles of repeated loading at 0.8 times the ultimate load. In contrast, the benchmark specimens could only withstand seven cycles. These findings highlight that the use of carbon fiber sheets not only enhances compressive strength but also improves resistance to cyclic loading. |
---|