Cargando…

PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles’ hydrophilicity, and trehalose enhances the nanoparticle’s cellular internalization by indu...

Descripción completa

Detalles Bibliográficos
Autores principales: Caballero-Florán, Isaac H., Cortés, Hernán, Borbolla-Jiménez, Fabiola V., Florán-Hernández, Carla D., Del Prado-Audelo, María L., Magaña, Jonathan J., Florán, Benjamín, Leyva-Gómez, Gerardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304145/
https://www.ncbi.nlm.nih.gov/pubmed/37376043
http://dx.doi.org/10.3390/pharmaceutics15061594
_version_ 1785065438413062144
author Caballero-Florán, Isaac H.
Cortés, Hernán
Borbolla-Jiménez, Fabiola V.
Florán-Hernández, Carla D.
Del Prado-Audelo, María L.
Magaña, Jonathan J.
Florán, Benjamín
Leyva-Gómez, Gerardo
author_facet Caballero-Florán, Isaac H.
Cortés, Hernán
Borbolla-Jiménez, Fabiola V.
Florán-Hernández, Carla D.
Del Prado-Audelo, María L.
Magaña, Jonathan J.
Florán, Benjamín
Leyva-Gómez, Gerardo
author_sort Caballero-Florán, Isaac H.
collection PubMed
description This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles’ hydrophilicity, and trehalose enhances the nanoparticle’s cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin’s fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.
format Online
Article
Text
id pubmed-10304145
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103041452023-06-29 PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells Caballero-Florán, Isaac H. Cortés, Hernán Borbolla-Jiménez, Fabiola V. Florán-Hernández, Carla D. Del Prado-Audelo, María L. Magaña, Jonathan J. Florán, Benjamín Leyva-Gómez, Gerardo Pharmaceutics Article This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles’ hydrophilicity, and trehalose enhances the nanoparticle’s cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin’s fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency. MDPI 2023-05-25 /pmc/articles/PMC10304145/ /pubmed/37376043 http://dx.doi.org/10.3390/pharmaceutics15061594 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Caballero-Florán, Isaac H.
Cortés, Hernán
Borbolla-Jiménez, Fabiola V.
Florán-Hernández, Carla D.
Del Prado-Audelo, María L.
Magaña, Jonathan J.
Florán, Benjamín
Leyva-Gómez, Gerardo
PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title_full PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title_fullStr PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title_full_unstemmed PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title_short PEG 400:Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells
title_sort peg 400:trehalose coating enhances curcumin-loaded plga nanoparticle internalization in neuronal cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304145/
https://www.ncbi.nlm.nih.gov/pubmed/37376043
http://dx.doi.org/10.3390/pharmaceutics15061594
work_keys_str_mv AT caballerofloranisaach peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT corteshernan peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT borbollajimenezfabiolav peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT floranhernandezcarlad peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT delpradoaudelomarial peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT maganajonathanj peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT floranbenjamin peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells
AT leyvagomezgerardo peg400trehalosecoatingenhancescurcuminloadedplgananoparticleinternalizationinneuronalcells