Cargando…
Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity
The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as “L’Kharrûb”, holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxid...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304182/ https://www.ncbi.nlm.nih.gov/pubmed/37375787 http://dx.doi.org/10.3390/ph16060840 |
_version_ | 1785065446876119040 |
---|---|
author | Elbouzidi, Amine Taibi, Mohamed Ouassou, Hayat Ouahhoud, Sabir Ou-Yahia, Douâae Loukili, El Hassania Aherkou, Marouane Mansouri, Farid Bencheikh, Noureddine Laaraj, Salah Bellaouchi, Reda Saalaoui, Ennouamane Elfazazi, Kaoutar Berrichi, Abdelbasset Abid, Malika Addi, Mohamed |
author_facet | Elbouzidi, Amine Taibi, Mohamed Ouassou, Hayat Ouahhoud, Sabir Ou-Yahia, Douâae Loukili, El Hassania Aherkou, Marouane Mansouri, Farid Bencheikh, Noureddine Laaraj, Salah Bellaouchi, Reda Saalaoui, Ennouamane Elfazazi, Kaoutar Berrichi, Abdelbasset Abid, Malika Addi, Mohamed |
author_sort | Elbouzidi, Amine |
collection | PubMed |
description | The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as “L’Kharrûb”, holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC(50) of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC(50) of 260.24 ± 6.45 µg/mL. Similarly, the β-carotene test demonstrated an IC(50) of 352.06 ± 12.16 µg/mL, signifying the extract’s potential to inhibit oxidative damage. The ABTS assay revealed IC(50) values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC(50) value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver. |
format | Online Article Text |
id | pubmed-10304182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103041822023-06-29 Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity Elbouzidi, Amine Taibi, Mohamed Ouassou, Hayat Ouahhoud, Sabir Ou-Yahia, Douâae Loukili, El Hassania Aherkou, Marouane Mansouri, Farid Bencheikh, Noureddine Laaraj, Salah Bellaouchi, Reda Saalaoui, Ennouamane Elfazazi, Kaoutar Berrichi, Abdelbasset Abid, Malika Addi, Mohamed Pharmaceuticals (Basel) Article The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as “L’Kharrûb”, holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC(50) of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC(50) of 260.24 ± 6.45 µg/mL. Similarly, the β-carotene test demonstrated an IC(50) of 352.06 ± 12.16 µg/mL, signifying the extract’s potential to inhibit oxidative damage. The ABTS assay revealed IC(50) values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC(50) value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver. MDPI 2023-06-05 /pmc/articles/PMC10304182/ /pubmed/37375787 http://dx.doi.org/10.3390/ph16060840 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Elbouzidi, Amine Taibi, Mohamed Ouassou, Hayat Ouahhoud, Sabir Ou-Yahia, Douâae Loukili, El Hassania Aherkou, Marouane Mansouri, Farid Bencheikh, Noureddine Laaraj, Salah Bellaouchi, Reda Saalaoui, Ennouamane Elfazazi, Kaoutar Berrichi, Abdelbasset Abid, Malika Addi, Mohamed Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title | Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title_full | Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title_fullStr | Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title_full_unstemmed | Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title_short | Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity |
title_sort | exploring the multi-faceted potential of carob (ceratonia siliqua var. rahma) leaves from morocco: a comprehensive analysis of polyphenols profile, antimicrobial activity, cytotoxicity against breast cancer cell lines, and genotoxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304182/ https://www.ncbi.nlm.nih.gov/pubmed/37375787 http://dx.doi.org/10.3390/ph16060840 |
work_keys_str_mv | AT elbouzidiamine exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT taibimohamed exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT ouassouhayat exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT ouahhoudsabir exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT ouyahiadouaae exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT loukilielhassania exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT aherkoumarouane exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT mansourifarid exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT bencheikhnoureddine exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT laarajsalah exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT bellaouchireda exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT saalaouiennouamane exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT elfazazikaoutar exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT berrichiabdelbasset exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT abidmalika exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity AT addimohamed exploringthemultifacetedpotentialofcarobceratoniasiliquavarrahmaleavesfrommoroccoacomprehensiveanalysisofpolyphenolsprofileantimicrobialactivitycytotoxicityagainstbreastcancercelllinesandgenotoxicity |