Cargando…
Decomposed Dissimilarity Measure for Evaluation of Digital Image Denoising
A new approach to the evaluation of digital image denoising algorithms is presented. In the proposed method, the mean absolute error (MAE) is decomposed into three components that reflect the different cases of denoising imperfections. Moreover, aim plots are described, which are designed to be a ve...
Autor principal: | Maliński, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304227/ https://www.ncbi.nlm.nih.gov/pubmed/37420823 http://dx.doi.org/10.3390/s23125657 |
Ejemplares similares
-
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
Decomposing the effects of digitalization on workers’ job satisfaction
por: Bolli, Thomas, et al.
Publicado: (2022) -
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
Deflectometry and image denoising
por: Komander, Birgit
Publicado: (2019) -
Multicomponent MR Image Denoising
por: Manjón, José V., et al.
Publicado: (2009)