Cargando…

Epoxidized Soybean-Oils-Based Pressure-Sensitive Adhesives with Di-Hydroxylated Soybean-Oils Copolymerizing and Antioxidant Grafting

Vegetable-oils-based pressure-sensitive adhesives (PSAs) are being developed as a substitute for petrochemical-based PSAs for application in daily life. However, vegetable-oils-based PSAs face the problems of unsatisfactory binding strengths and easy aging. In this work, the grafting of antioxidants...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuang, Yongyan, Li, Wenlong, Xie, Shuli, Gong, Weijian, Ye, Zihan, Wang, Yiming, Peng, Dan, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304238/
https://www.ncbi.nlm.nih.gov/pubmed/37376355
http://dx.doi.org/10.3390/polym15122709
Descripción
Sumario:Vegetable-oils-based pressure-sensitive adhesives (PSAs) are being developed as a substitute for petrochemical-based PSAs for application in daily life. However, vegetable-oils-based PSAs face the problems of unsatisfactory binding strengths and easy aging. In this work, the grafting of antioxidants (tea polyphenol palmitates, caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate (PG), tea polyphenols) was introduced into an epoxidized soybean oils (ESO)/di-hydroxylated soybean oils (DSO)-based PSA system to improve the binding strengths and aging-resistant properties. PG was screened out as the most suitable antioxidant in the ESO/DSO-based PSA system. Under optimal conditions (ESO/DSO mass ratio of 9/3, 0.8% PG, 55% rosin ester (RE), 8% phosphoric acid (PA), 50 °C, and 5 min), the peel adhesion, tack, and shear adhesion of the PG-grafted ESO/DSO-based PSA increased to 1.718 N/cm, 4.62 N, and >99 h, respectively, in comparison with the control (0.879 N/cm, 3.59 N, and 13.88 h), while peel adhesion residue reduced to 12.16% in comparison with the control (484.07%). The thermal stability of the ESO/DSO-based PSA was enhanced after PG grafting. PG, RE, PA, and DSO were partially crosslinked in the PSA system, with the rest being free in the network structures. Thus, antioxidant grafting is a feasible method for improving the binding strengths and aging-resistant properties of vegetable-oils-based PSAs.