Cargando…
Crystallographic Texture and Substructural Phenomena in 316 Stainless Steel Printed by Selective Laser Melting
There is a fast-growing interest in the use of selective laser melting (SLM) for metal/alloy additive manufacturing. Our current knowledge of SLM-printed 316 stainless steel (SS316) is limited and sometimes appears sporadic, presumably due to the complex interdependent effects of a large number of p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304253/ https://www.ncbi.nlm.nih.gov/pubmed/37374475 http://dx.doi.org/10.3390/ma16124289 |
Sumario: | There is a fast-growing interest in the use of selective laser melting (SLM) for metal/alloy additive manufacturing. Our current knowledge of SLM-printed 316 stainless steel (SS316) is limited and sometimes appears sporadic, presumably due to the complex interdependent effects of a large number of process variables of the SLM processing. This is reflected in the discrepant findings in the crystallographic textures and microstructures in this investigation compared to those reported in the literature, which also vary among themselves. The as-printed material is macroscopically asymmetric in terms of both structure and crystallographic texture. The <101> and <111> crystallographic directions align parallel with the SLM scanning direction (SD) and build direction (BD), respectively. Likewise, some characteristic low-angle boundary features have been reported to be crystallographic, while this investigation unequivocally proves them to be non-crystallographic, since they always maintain an identical alignment with the SLM laser scanning direction, irrespective of the matrix material’s crystal orientation. There are also 500 ± 200 nm columnar or cellular features, depending on the cross-section, which are generally found all over the sample. These columnar or cellular features are formed with walls made of dense packing of dislocations entangled with Mn-, Si- and O-enriched amorphous inclusions. They remain stable after ASM solution treatments at a temperature of 1050 °C, and therefore, are capable of hindering boundary migration events of recrystallization and grain growth. Thus, the nanoscale structures can be retained at high temperatures. Large 2–4 μm inclusions form during the solution treatment, within which the chemical and phase distribution are heterogeneous. |
---|