Cargando…
Quantum Graph Neural Network Models for Materials Search
Inspired by classical graph neural networks, we discuss a novel quantum graph neural network (QGNN) model to predict the chemical and physical properties of molecules and materials. QGNNs were investigated to predict the energy gap between the highest occupied and lowest unoccupied molecular orbital...
Autores principales: | Ryu, Ju-Young, Elala, Eyuel, Rhee, June-Koo Kevin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304445/ https://www.ncbi.nlm.nih.gov/pubmed/37374486 http://dx.doi.org/10.3390/ma16124300 |
Ejemplares similares
-
Graph Neural Network
Guided Evolutionary Search of
Grain Boundaries in 2D Materials
por: Zhang, Jianan, et al.
Publicado: (2023) -
Upper-Bound Energy
Minimization to Search for Stable
Functional Materials with Graph Neural Networks
por: Law, Jeffrey N., et al.
Publicado: (2022) -
Graph neural networks for materials science and chemistry
por: Reiser, Patrick, et al.
Publicado: (2022) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
Performance of Particle Tracking Using a Quantum Graph Neural Network
por: Tüysüz, Cenk, et al.
Publicado: (2020)