Cargando…
Human Motion Prediction via Dual-Attention and Multi-Granularity Temporal Convolutional Networks
Intelligent devices, which significantly improve the quality of life and work efficiency, are now widely integrated into people’s daily lives and work. A precise understanding and analysis of human motion is essential for achieving harmonious coexistence and efficient interaction between intelligent...
Autores principales: | Huang, Biaozhang, Li, Xinde |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304512/ https://www.ncbi.nlm.nih.gov/pubmed/37420819 http://dx.doi.org/10.3390/s23125653 |
Ejemplares similares
-
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
por: Huang, Xiaohui, et al.
Publicado: (2023) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network
por: Cheng, Shuyu, et al.
Publicado: (2023) -
STTG-net: a Spatio-temporal network for human motion prediction based on transformer and graph convolution network
por: Chen, Lujing, et al.
Publicado: (2022)