Cargando…
FCAN–XGBoost: A Novel Hybrid Model for EEG Emotion Recognition
In recent years, artificial intelligence (AI) technology has promoted the development of electroencephalogram (EEG) emotion recognition. However, existing methods often overlook the computational cost of EEG emotion recognition, and there is still room for improvement in the accuracy of EEG emotion...
Autores principales: | Zong, Jing, Xiong, Xin, Zhou, Jianhua, Ji, Ying, Zhou, Diao, Zhang, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304516/ https://www.ncbi.nlm.nih.gov/pubmed/37420845 http://dx.doi.org/10.3390/s23125680 |
Ejemplares similares
-
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
Coal gangue recognition based on spectral imaging combined with XGBoost
por: Zhou, Minghao, et al.
Publicado: (2023) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
DEEMD-SPP: A Novel Framework for Emotion Recognition Based on EEG Signals
por: Chen, Jing, et al.
Publicado: (2022)