Cargando…
Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine
Currently available COVID vaccines are effective in reducing mortality and severity but do not prevent transmission of the virus or reinfection by the emerging SARS-CoV-2 variants. There is an obvious need for better and longer-lasting effective vaccines for various prevailing strains and the evolvi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304668/ https://www.ncbi.nlm.nih.gov/pubmed/37376479 http://dx.doi.org/10.3390/vaccines11061090 |
_version_ | 1785065562754252800 |
---|---|
author | Khamjan, Nizar A. Lohani, Mohtashim Khan, Mohammad Faheem Khan, Saif Algaissi, Abdullah |
author_facet | Khamjan, Nizar A. Lohani, Mohtashim Khan, Mohammad Faheem Khan, Saif Algaissi, Abdullah |
author_sort | Khamjan, Nizar A. |
collection | PubMed |
description | Currently available COVID vaccines are effective in reducing mortality and severity but do not prevent transmission of the virus or reinfection by the emerging SARS-CoV-2 variants. There is an obvious need for better and longer-lasting effective vaccines for various prevailing strains and the evolving SARS-CoV-2 virus, necessitating the development of a broad-spectrum vaccine that can be used to prevent infection by reducing both the transmission rate and re-infection. During the initial phases of SARS-CoV-2 infection, the nucleocapsid (N) protein is one of the most abundantly expressed proteins. Additionally, it has been identified as the most immunogenic protein of SARS-CoV-2. In this study, state-of-the-art bioinformatics techniques have been exploited to design novel multiple epitope vaccines using conserved regions of N proteins from prevalent strains of SARS-CoV-2 for the prediction of B- and T-cell epitopes. These epitopes were sorted based on their immunogenicity, antigenicity score, and toxicity. The most effective multi-epitope construct with possible immunogenic properties was created using epitope combinations. EAAAK, AAY, and GPGPG were used as linkers to connect epitopes. The developed vaccines have shown positive results in terms of overall population coverage and stimulation of the immune response. Potential expression of the chimeric protein construct was detected after it was cloned into the Pet28a/Cas9-cys vector for expression screening in Escherichia coli. The developed vaccine performed well in computer-based immune response simulation and covered a diverse allelic population worldwide. These computational findings are very encouraging for the further testing of our candidate vaccine, which could eventually aid in the control and prevention of SARS-CoV-2 infections globally. |
format | Online Article Text |
id | pubmed-10304668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103046682023-06-29 Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine Khamjan, Nizar A. Lohani, Mohtashim Khan, Mohammad Faheem Khan, Saif Algaissi, Abdullah Vaccines (Basel) Article Currently available COVID vaccines are effective in reducing mortality and severity but do not prevent transmission of the virus or reinfection by the emerging SARS-CoV-2 variants. There is an obvious need for better and longer-lasting effective vaccines for various prevailing strains and the evolving SARS-CoV-2 virus, necessitating the development of a broad-spectrum vaccine that can be used to prevent infection by reducing both the transmission rate and re-infection. During the initial phases of SARS-CoV-2 infection, the nucleocapsid (N) protein is one of the most abundantly expressed proteins. Additionally, it has been identified as the most immunogenic protein of SARS-CoV-2. In this study, state-of-the-art bioinformatics techniques have been exploited to design novel multiple epitope vaccines using conserved regions of N proteins from prevalent strains of SARS-CoV-2 for the prediction of B- and T-cell epitopes. These epitopes were sorted based on their immunogenicity, antigenicity score, and toxicity. The most effective multi-epitope construct with possible immunogenic properties was created using epitope combinations. EAAAK, AAY, and GPGPG were used as linkers to connect epitopes. The developed vaccines have shown positive results in terms of overall population coverage and stimulation of the immune response. Potential expression of the chimeric protein construct was detected after it was cloned into the Pet28a/Cas9-cys vector for expression screening in Escherichia coli. The developed vaccine performed well in computer-based immune response simulation and covered a diverse allelic population worldwide. These computational findings are very encouraging for the further testing of our candidate vaccine, which could eventually aid in the control and prevention of SARS-CoV-2 infections globally. MDPI 2023-06-12 /pmc/articles/PMC10304668/ /pubmed/37376479 http://dx.doi.org/10.3390/vaccines11061090 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khamjan, Nizar A. Lohani, Mohtashim Khan, Mohammad Faheem Khan, Saif Algaissi, Abdullah Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title | Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title_full | Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title_fullStr | Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title_full_unstemmed | Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title_short | Immunoinformatics Strategy to Develop a Novel Universal Multiple Epitope-Based COVID-19 Vaccine |
title_sort | immunoinformatics strategy to develop a novel universal multiple epitope-based covid-19 vaccine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304668/ https://www.ncbi.nlm.nih.gov/pubmed/37376479 http://dx.doi.org/10.3390/vaccines11061090 |
work_keys_str_mv | AT khamjannizara immunoinformaticsstrategytodevelopanoveluniversalmultipleepitopebasedcovid19vaccine AT lohanimohtashim immunoinformaticsstrategytodevelopanoveluniversalmultipleepitopebasedcovid19vaccine AT khanmohammadfaheem immunoinformaticsstrategytodevelopanoveluniversalmultipleepitopebasedcovid19vaccine AT khansaif immunoinformaticsstrategytodevelopanoveluniversalmultipleepitopebasedcovid19vaccine AT algaissiabdullah immunoinformaticsstrategytodevelopanoveluniversalmultipleepitopebasedcovid19vaccine |