Cargando…

Parameter Optimization for Printing Barium Titanate Piezoelectric Ceramics through Digital Light Processing

Digital light processing (DLP) technology has emerged as a promising 3D printing technology with the potential for the efficient manufacturing of complex ceramic devices. However, the quality of printed products is highly dependent on various process parameters, including slurry formulation, heat tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dongcai, Yang, Yaodong, Rao, Wei-Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304723/
https://www.ncbi.nlm.nih.gov/pubmed/37374731
http://dx.doi.org/10.3390/mi14061146
Descripción
Sumario:Digital light processing (DLP) technology has emerged as a promising 3D printing technology with the potential for the efficient manufacturing of complex ceramic devices. However, the quality of printed products is highly dependent on various process parameters, including slurry formulation, heat treatment process, and poling process. This paper optimizes the printing process with respect to these key parameters, such as using a ceramic slurry with 75 wt% powder content. The employed degreasing heating rate is 4 °C/min, the carbon-removing heating rate is 4 °C/min, and the sintering heating rate is 2 °C/min for heat treatment of the printed green body. The resulting parts are polarized using a poling field of 10 kV/cm, a poling time of 50 min, and a poling temperature of 60 °C, which yields a piezoelectric device with a high piezoelectric constant of 211 pC/N. To demonstrate the practical application of the device, its use as a force sensor and magnetic sensor is validated.