Cargando…
Performance Analysis of Time Series Deep Learning Models for Climate Prediction in Indoor Hydroponic Greenhouses at Different Time Intervals
Indoor hydroponic greenhouses are becoming increasingly popular for sustainable food production. On the other hand, precise control of the climate conditions inside these greenhouses is crucial for the success of the crops. Time series deep learning models are adequate for climate predictions in ind...
Autores principales: | Eraliev, Oybek, Lee, Chul-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304734/ https://www.ncbi.nlm.nih.gov/pubmed/37375941 http://dx.doi.org/10.3390/plants12122316 |
Ejemplares similares
-
Vibration-Based Loosening Detection of a Multi-Bolt Structure Using Machine Learning Algorithms
por: Eraliev, Oybek, et al.
Publicado: (2022) -
Evaluating recycling fertilizers for tomato cultivation in hydroponics, and their impact on greenhouse gas emissions
por: Halbert-Howard, Aladdin, et al.
Publicado: (2020) -
Time-Series Laplacian Semi-Supervised Learning for Indoor Localization †
por: Yoo, Jaehyun
Publicado: (2019) -
Performance analysis of two typical greenhouse lettuce production systems: commercial hydroponic production and traditional soil cultivation
por: Wang, Lichun, et al.
Publicado: (2023) -
Effects of light intensities and varying watering intervals on growth, tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions
por: Ncise, Wanga, et al.
Publicado: (2020)