Cargando…
Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite
A polymeric nanocomposite film, composed of PMMA/PVDF and different amounts of CuO NPs, was successfully prepared using the casting method to enhance its electrical conductivity. Various techniques were employed to investigate their physicochemical properties. The addition of CuO NPs causes a notice...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304735/ https://www.ncbi.nlm.nih.gov/pubmed/37374780 http://dx.doi.org/10.3390/mi14061195 |
_version_ | 1785065577296953344 |
---|---|
author | Trabelsi, Amira Ben Gouider Mostafa, Ayman M. Alkallas, Fatemah H. Elsharkawy, W. B. Al-Ahmadi, Ameenah N. Ahmed, Hoda A. Nafee, Sherif S. Pashameah, Rami Adel Mwafy, Eman A. |
author_facet | Trabelsi, Amira Ben Gouider Mostafa, Ayman M. Alkallas, Fatemah H. Elsharkawy, W. B. Al-Ahmadi, Ameenah N. Ahmed, Hoda A. Nafee, Sherif S. Pashameah, Rami Adel Mwafy, Eman A. |
author_sort | Trabelsi, Amira Ben Gouider |
collection | PubMed |
description | A polymeric nanocomposite film, composed of PMMA/PVDF and different amounts of CuO NPs, was successfully prepared using the casting method to enhance its electrical conductivity. Various techniques were employed to investigate their physicochemical properties. The addition of CuO NPs causes a noticeable difference in the intensities and locations of vibrational peaks in all bands, confirming the incorporation of CuO NPs inside the PVDF/PMMA. In addition, the broadening of the peak at 2θ = 20.6° becomes more intense with increasing amounts of CuO NPs, confirming the increase in the amorphous characteristic of PMMA/PVDF incorporated with CuO NPs in comparison with PMMA/PVDF. Furthermore, the image of the polymeric structure exhibits a smoother shape and interconnection of pore structure associated with spherical particles that agglomerate and give rise to a web-like organization that becomes a matrix. Increasing surface roughness is responsible for an increasing surface area. Moreover, the addition of CuO NPs in the PMMA/PVDF leads to a decrease in the energy band gap, and further increasing the additional amounts of CuO NPs causes the generation of localized states between the valence and conduction bands. Furthermore, the dielectric investigation shows an increase in the dielectric constant, dielectric loss, and electric conductivity, which may be an indication of an increase in the degree of disorder that confines the movement of charge carriers and demonstrates the creation of an interconnected percolating chain, enhancing its conductivity values compared with that without the incorporation of a matrix. |
format | Online Article Text |
id | pubmed-10304735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103047352023-06-29 Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite Trabelsi, Amira Ben Gouider Mostafa, Ayman M. Alkallas, Fatemah H. Elsharkawy, W. B. Al-Ahmadi, Ameenah N. Ahmed, Hoda A. Nafee, Sherif S. Pashameah, Rami Adel Mwafy, Eman A. Micromachines (Basel) Article A polymeric nanocomposite film, composed of PMMA/PVDF and different amounts of CuO NPs, was successfully prepared using the casting method to enhance its electrical conductivity. Various techniques were employed to investigate their physicochemical properties. The addition of CuO NPs causes a noticeable difference in the intensities and locations of vibrational peaks in all bands, confirming the incorporation of CuO NPs inside the PVDF/PMMA. In addition, the broadening of the peak at 2θ = 20.6° becomes more intense with increasing amounts of CuO NPs, confirming the increase in the amorphous characteristic of PMMA/PVDF incorporated with CuO NPs in comparison with PMMA/PVDF. Furthermore, the image of the polymeric structure exhibits a smoother shape and interconnection of pore structure associated with spherical particles that agglomerate and give rise to a web-like organization that becomes a matrix. Increasing surface roughness is responsible for an increasing surface area. Moreover, the addition of CuO NPs in the PMMA/PVDF leads to a decrease in the energy band gap, and further increasing the additional amounts of CuO NPs causes the generation of localized states between the valence and conduction bands. Furthermore, the dielectric investigation shows an increase in the dielectric constant, dielectric loss, and electric conductivity, which may be an indication of an increase in the degree of disorder that confines the movement of charge carriers and demonstrates the creation of an interconnected percolating chain, enhancing its conductivity values compared with that without the incorporation of a matrix. MDPI 2023-06-04 /pmc/articles/PMC10304735/ /pubmed/37374780 http://dx.doi.org/10.3390/mi14061195 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trabelsi, Amira Ben Gouider Mostafa, Ayman M. Alkallas, Fatemah H. Elsharkawy, W. B. Al-Ahmadi, Ameenah N. Ahmed, Hoda A. Nafee, Sherif S. Pashameah, Rami Adel Mwafy, Eman A. Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title | Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title_full | Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title_fullStr | Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title_full_unstemmed | Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title_short | Effect of CuO Nanoparticles on the Optical, Structural, and Electrical Properties in the PMMA/PVDF Nanocomposite |
title_sort | effect of cuo nanoparticles on the optical, structural, and electrical properties in the pmma/pvdf nanocomposite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304735/ https://www.ncbi.nlm.nih.gov/pubmed/37374780 http://dx.doi.org/10.3390/mi14061195 |
work_keys_str_mv | AT trabelsiamirabengouider effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT mostafaaymanm effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT alkallasfatemahh effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT elsharkawywb effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT alahmadiameenahn effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT ahmedhodaa effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT nafeesherifs effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT pashameahramiadel effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite AT mwafyemana effectofcuonanoparticlesontheopticalstructuralandelectricalpropertiesinthepmmapvdfnanocomposite |