Cargando…
Combined CNN and RNN Neural Networks for GPR Detection of Railway Subgrade Diseases
Vehicle-mounted ground-penetrating radar (GPR) has been used to non-destructively inspect and evaluate railway subgrade conditions. However, existing GPR data processing and interpretation methods mostly rely on time-consuming manual interpretation, and limited studies have applied machine learning...
Autores principales: | Liu, Huan, Wang, Shilei, Jing, Guoqing, Yu, Ziye, Yang, Jin, Zhang, Yong, Guo, Yunlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304807/ https://www.ncbi.nlm.nih.gov/pubmed/37420549 http://dx.doi.org/10.3390/s23125383 |
Ejemplares similares
-
State-of-the-Art Review of Ground Penetrating Radar (GPR) Applications for Railway Ballast Inspection
por: Wang, Shilei, et al.
Publicado: (2022) -
Identification of railway subgrade defects based on ground penetrating radar
por: Hou, Zhezhe, et al.
Publicado: (2023) -
Comparative Analysis of CNN and RNN for Voice Pathology Detection
por: Syed, Sidra Abid, et al.
Publicado: (2021) -
Analysis of Behaviors of the Railway Subgrade with a New Waterproof Seal Layer
por: Wang, Wubin, et al.
Publicado: (2022) -
Neural networks with R: smart models using CNN, RNN, deep learning, and artificial intelligence principles
por: Ciaburro, Giuseppe, et al.
Publicado: (2017)