Cargando…
A Deep Learning Method for Rolling Bearing Fault Diagnosis Based on Attention Mechanism and Graham Angle Field
Focusing on the low accuracy and timeliness of traditional fault diagnosis methods for rolling bearings which combine massive amounts of data, a fault diagnosis method for rolling bearings based on Gramian angular field (GAF) coding technology and an improved ResNet50 model is proposed. Using the Gr...
Autores principales: | Lu, Jingyu, Wang, Kai, Chen, Chen, Ji, Weixi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304889/ https://www.ncbi.nlm.nih.gov/pubmed/37420653 http://dx.doi.org/10.3390/s23125487 |
Ejemplares similares
-
Rolling Bearing Fault Detection System and Experiment Based on Deep Learning
por: Zhang, Bo
Publicado: (2022) -
End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing Fault Diagnosis
por: Zheng, Jianbo, et al.
Publicado: (2022) -
WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing
por: Liu, Ruozhu, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network
por: Yan, Jialin, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022)