Cargando…
A Physics-Informed Automatic Neural Network Generation Framework for Emerging Device Modeling
With the rapid development of semiconductor technology, traditional equation-based modeling faces challenges in accuracy and development time. To overcome these limitations, neural network (NN)-based modeling methods have been proposed. However, the NN-based compact model encounters two major issues...
Autores principales: | Guo, Guangxin, You, Hailong, Li, Cong, Tang, Zhengguang, Li, Ouwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304974/ https://www.ncbi.nlm.nih.gov/pubmed/37374735 http://dx.doi.org/10.3390/mi14061150 |
Ejemplares similares
-
Framework for automatic information extraction from research papers on nanocrystal devices
por: Dieb, Thaer M, et al.
Publicado: (2015) -
Automatic Classification Framework of Tongue Feature Based on Convolutional Neural Networks
por: Li, Jiawei, et al.
Publicado: (2022) -
An image selection framework for automatic report generation
por: Hyun, Changhun, et al.
Publicado: (2022) -
Convolutional neural network models for automatic diagnosis and graduation in skin frostbite
por: Sun, Jiachen, et al.
Publicado: (2022) -
HAEPG: An Automatic Multi-hop Exploitation Generation Framework
por: Zhao, Zixuan, et al.
Publicado: (2020)