Cargando…
Fault Diagnosis of Rotating Machinery: A Highly Efficient and Lightweight Framework Based on a Temporal Convolutional Network and Broad Learning System
Efficient fault diagnosis of rotating machinery is essential for the safe operation of equipment in the manufacturing industry. In this study, a robust and lightweight framework consisting of two lightweight temporal convolutional network (LTCN) backbones and a broad learning system with incremental...
Autores principales: | Wei, Hao, Zhang, Qinghua, Gu, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305043/ https://www.ncbi.nlm.nih.gov/pubmed/37420808 http://dx.doi.org/10.3390/s23125642 |
Ejemplares similares
-
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
por: Liu, Wenkai, et al.
Publicado: (2019) -
A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
por: Yang, Daoguang, et al.
Publicado: (2022) -
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020)