Cargando…
Comparison of Training Strategies for Autoencoder-Based Monochromatic Image Denoising
Monochromatic images are used mainly in cases where the intensity of the received signal is examined. The identification of the observed objects as well as the estimation of intensity emitted by them depends largely on the precision of light measurement in image pixels. Unfortunately, this type of i...
Autores principales: | Jóźwik-Wabik, Piotr, Bernacki, Krzysztof, Popowicz, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305082/ https://www.ncbi.nlm.nih.gov/pubmed/37420705 http://dx.doi.org/10.3390/s23125538 |
Ejemplares similares
-
Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise
por: Miranda-González, Armando Adrián, et al.
Publicado: (2023) -
Modified Distance Transformation for Image Enhancement in NIR Imaging of Finger Vein System
por: Bernacki, Krzysztof, et al.
Publicado: (2020) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Detecting Anomalies of Satellite Power Subsystem via Stage-Training Denoising Autoencoders
por: Jin, Weihua, et al.
Publicado: (2019) -
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images
por: Solovyeva, Elena, et al.
Publicado: (2022)