Cargando…
MuTr: Multi-Stage Transformer for Hand Pose Estimation from Full-Scene Depth Image
This work presents a novel transformer-based method for hand pose estimation—DePOTR. We test the DePOTR method on four benchmark datasets, where DePOTR outperforms other transformer-based methods while achieving results on par with other state-of-the-art methods. To further demonstrate the strength...
Autores principales: | Kanis, Jakub, Gruber, Ivan, Krňoul, Zdeněk, Boháček, Matyáš, Straka, Jakub, Hrúz, Marek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305187/ https://www.ncbi.nlm.nih.gov/pubmed/37420676 http://dx.doi.org/10.3390/s23125509 |
Ejemplares similares
-
One Model is Not Enough: Ensembles for Isolated Sign Language Recognition
por: Hrúz, Marek, et al.
Publicado: (2022) -
Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation
por: He, Wangyong, et al.
Publicado: (2019) -
CrossFuNet: RGB and Depth Cross-Fusion Network for Hand Pose Estimation
por: Sun, Xiaojing, et al.
Publicado: (2021) -
Pose Mask: A Model-Based Augmentation Method for 2D Pose Estimation in Classroom Scenes Using Surveillance Images
por: Liu, Shichang, et al.
Publicado: (2022) -
Accurate Object Pose Estimation Using Depth Only
por: Li, Mingyu, et al.
Publicado: (2018)