Cargando…

Study on Acoustic Emission Characteristics of Fatigue Damage of A7N01 Aluminum Alloy for High-Speed Trains

Online monitoring of the fatigue damage process of A7N01 aluminum alloy base metal and weld seam was conducted based on acoustic emission (AE) and digital microscopic imaging technology. The AE signals were recorded during the fatigue tests and analyzed using the AE characteristic parameter method....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ronghua, Fang, Song, Sun, Weibing, Chi, Dazhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305194/
https://www.ncbi.nlm.nih.gov/pubmed/37374545
http://dx.doi.org/10.3390/ma16124362
Descripción
Sumario:Online monitoring of the fatigue damage process of A7N01 aluminum alloy base metal and weld seam was conducted based on acoustic emission (AE) and digital microscopic imaging technology. The AE signals were recorded during the fatigue tests and analyzed using the AE characteristic parameter method. Fatigue fracture was observed using scanning electron microscopy (SEM) to analyze the source mechanism of AE. The AE results show that the AE count and rise time can effectively predict the initiation of fatigue microcracks in A7N01 aluminum alloy. The digital image monitoring results of a notch tip verified the prediction of fatigue microcracks using the AE characteristic parameters. In addition, the AE characteristics of the A7N01 aluminum alloy under different fatigue parameters were studied, and the relationships between the AE characteristic values of the base metal and weld seam and the crack propagation rate were calculated using the seven-point recurrence polynomial method. These provide a basis for predicting the remaining fatigue damage in the A7N01 aluminum alloy. The present work indicates that AE technology can be used to monitor the fatigue damage evolution of welded aluminum alloy structures.