Cargando…
Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease
Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogene...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305328/ https://www.ncbi.nlm.nih.gov/pubmed/37367929 http://dx.doi.org/10.3390/metabo13060772 |
_version_ | 1785065707805868032 |
---|---|
author | Giuli, Lucia Maestri, Marta Santopaolo, Francesco Pompili, Maurizio Ponziani, Francesca Romana |
author_facet | Giuli, Lucia Maestri, Marta Santopaolo, Francesco Pompili, Maurizio Ponziani, Francesca Romana |
author_sort | Giuli, Lucia |
collection | PubMed |
description | Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogenesis of cerebral dysfunction in patients with acute and/or chronic liver disease. However, recent studies demonstrated a key role of neuroinflammation in the development of neurological complications in this setting. Neuroinflammation is characterized by activation of microglial cells and brain secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which alter neurotransmission, leading to cognitive and motor dysfunction. Changes in the gut microbiota resulting from liver disease play a crucial role in the pathogenesis of neuroinflammation. Dysbiosis and altered intestinal permeability, resulting in bacterial translocation and endotoxemia, are responsible for systemic inflammation, which can spread to brain tissue and trigger neuroinflammation. In addition, metabolites derived from the gut microbiota can act on the central nervous system and facilitate the development of neurological complications, exacerbating clinical manifestations. Thus, strategies aimed at modulating the gut microbiota may be effective therapeutic weapons. In this review, we summarize the current knowledge on the role of the gut–liver–brain axis in the pathogenesis of neurological dysfunction associated with liver disease, with a particular focus on neuroinflammation. In addition, we highlight emerging therapeutic approaches targeting the gut microbiota and inflammation in this clinical setting. |
format | Online Article Text |
id | pubmed-10305328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103053282023-06-29 Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease Giuli, Lucia Maestri, Marta Santopaolo, Francesco Pompili, Maurizio Ponziani, Francesca Romana Metabolites Review Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogenesis of cerebral dysfunction in patients with acute and/or chronic liver disease. However, recent studies demonstrated a key role of neuroinflammation in the development of neurological complications in this setting. Neuroinflammation is characterized by activation of microglial cells and brain secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which alter neurotransmission, leading to cognitive and motor dysfunction. Changes in the gut microbiota resulting from liver disease play a crucial role in the pathogenesis of neuroinflammation. Dysbiosis and altered intestinal permeability, resulting in bacterial translocation and endotoxemia, are responsible for systemic inflammation, which can spread to brain tissue and trigger neuroinflammation. In addition, metabolites derived from the gut microbiota can act on the central nervous system and facilitate the development of neurological complications, exacerbating clinical manifestations. Thus, strategies aimed at modulating the gut microbiota may be effective therapeutic weapons. In this review, we summarize the current knowledge on the role of the gut–liver–brain axis in the pathogenesis of neurological dysfunction associated with liver disease, with a particular focus on neuroinflammation. In addition, we highlight emerging therapeutic approaches targeting the gut microbiota and inflammation in this clinical setting. MDPI 2023-06-20 /pmc/articles/PMC10305328/ /pubmed/37367929 http://dx.doi.org/10.3390/metabo13060772 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Giuli, Lucia Maestri, Marta Santopaolo, Francesco Pompili, Maurizio Ponziani, Francesca Romana Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title | Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title_full | Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title_fullStr | Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title_full_unstemmed | Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title_short | Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease |
title_sort | gut microbiota and neuroinflammation in acute liver failure and chronic liver disease |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305328/ https://www.ncbi.nlm.nih.gov/pubmed/37367929 http://dx.doi.org/10.3390/metabo13060772 |
work_keys_str_mv | AT giulilucia gutmicrobiotaandneuroinflammationinacuteliverfailureandchronicliverdisease AT maestrimarta gutmicrobiotaandneuroinflammationinacuteliverfailureandchronicliverdisease AT santopaolofrancesco gutmicrobiotaandneuroinflammationinacuteliverfailureandchronicliverdisease AT pompilimaurizio gutmicrobiotaandneuroinflammationinacuteliverfailureandchronicliverdisease AT ponzianifrancescaromana gutmicrobiotaandneuroinflammationinacuteliverfailureandchronicliverdisease |