Cargando…
A Study on the Influence of Sensors in Frequency and Time Domains on Context Recognition
Adaptive AI for context and activity recognition remains a relatively unexplored field due to difficulty in collecting sufficient information to develop supervised models. Additionally, building a dataset for human context activities “in the wild” demands time and human resources, which explains the...
Autores principales: | de Souza, Pedro, Silva, Diógenes, de Andrade, Isabella, Dias, Júlia, Lima, João Paulo, Teichrieb, Veronica, Quintino, Jonysberg P., da Silva, Fabio Q. B., Santos, Andre L. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305340/ https://www.ncbi.nlm.nih.gov/pubmed/37420921 http://dx.doi.org/10.3390/s23125756 |
Ejemplares similares
-
Deep Learning in the Recognition of Activities of Daily Living Using Smartwatch Data
por: Cavalcante, Ariany F., et al.
Publicado: (2023) -
Incremental 3D Cuboid Modeling with Drift Compensation
por: Mishima, Masashi, et al.
Publicado: (2019) -
Motion Sensors for Knee Angle Recognition in Muscle Rehabilitation Solutions
por: Franco, Tiago, et al.
Publicado: (2022) -
Evaluation on Context Recognition Using Temperature Sensors in the Nostrils †
por: Kodama, Ryosuke, et al.
Publicado: (2019) -
Domain Adaptation Methods for Lab-to-Field Human Context Recognition †
por: Alajaji, Abdulaziz, et al.
Publicado: (2023)