Cargando…
Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors
Lithium-ion batteries are widely used in a variety of fields due to their high energy density, high power density, long service life, and environmental friendliness. However, safety accidents with lithium-ion batteries occur frequently. The real-time safety monitoring of lithium-ion batteries is par...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305618/ https://www.ncbi.nlm.nih.gov/pubmed/37420774 http://dx.doi.org/10.3390/s23125609 |
Sumario: | Lithium-ion batteries are widely used in a variety of fields due to their high energy density, high power density, long service life, and environmental friendliness. However, safety accidents with lithium-ion batteries occur frequently. The real-time safety monitoring of lithium-ion batteries is particularly important during their use. The fiber Bragg grating (FBG) sensors have some additional advantages over conventional electrochemical sensors, such as low invasiveness, electromagnetic anti-interference, and insulating properties. This paper reviews lithium-ion battery safety monitoring based on FBG sensors. The principles and sensing performance of FBG sensors are described. The single-parameter monitoring and dual-parameter monitoring of lithium-ion batteries based on FBG sensors are reviewed. The current application state of the monitored data in lithium-ion batteries is summarized. We also present a brief overview of the recent developments in FBG sensors used in lithium-ion batteries. Finally, we discuss future trends in lithium-ion battery safety monitoring based on FBG sensors. |
---|