Cargando…
Corrigendum: Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods
Autores principales: | Wu, Tianao, Zhang, Wei, Wu, Shuyu, Cheng, Minghan, Qi, Lushang, Shao, Guangcheng, Jiao, Xiyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305745/ https://www.ncbi.nlm.nih.gov/pubmed/37389286 http://dx.doi.org/10.3389/fpls.2023.1229908 |
Ejemplares similares
-
Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods
por: Wu, Tianao, et al.
Publicado: (2023) -
Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models
por: Yang, Kaili, et al.
Publicado: (2023) -
Identification of High Nitrogen Use Efficiency Phenotype in Rice (Oryza sativa L.) Through Entire Growth Duration by Unmanned Aerial Vehicle Multispectral Imagery
por: Liang, Ting, et al.
Publicado: (2021) -
Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy
por: Chakhvashvili, Erekle, et al.
Publicado: (2022) -
Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice
por: Robson, Jordan K, et al.
Publicado: (2023)