Cargando…
DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space
[Image: see text] The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are user-friendly as well as easily cus...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306259/ https://www.ncbi.nlm.nih.gov/pubmed/37272707 http://dx.doi.org/10.1021/acs.jcim.3c00434 |
Sumario: | [Image: see text] The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are user-friendly as well as easily customizable. In this application note, we present the new versatile open-source software package DrugEx for multiobjective reinforcement learning. This package contains the consolidated and redesigned scripts from the prior DrugEx papers including multiple generator architectures, a variety of scoring tools, and multiobjective optimization methods. It has a flexible application programming interface and can readily be used via the command line interface or the graphical user interface GenUI. The DrugEx package is publicly available at https://github.com/CDDLeiden/DrugEx. |
---|