Cargando…
DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space
[Image: see text] The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are user-friendly as well as easily cus...
Autores principales: | Šícho, Martin, Luukkonen, Sohvi, van den Maagdenberg, Helle W., Schoenmaker, Linde, Béquignon, Olivier J. M., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306259/ https://www.ncbi.nlm.nih.gov/pubmed/37272707 http://dx.doi.org/10.1021/acs.jcim.3c00434 |
Ejemplares similares
-
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning
por: Liu, Xuhan, et al.
Publicado: (2023) -
DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology
por: Liu, Xuhan, et al.
Publicado: (2021) -
UnCorrupt SMILES: a novel approach to de novo design
por: Schoenmaker, Linde, et al.
Publicado: (2023) -
Large-Scale Modeling
of Sparse Protein Kinase Activity
Data
por: Luukkonen, Sohvi, et al.
Publicado: (2023) -
Probing the chemical–biological relationship space with the Drug Target Explorer
por: Allaway, Robert J., et al.
Publicado: (2018)