Cargando…
Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation
The complexity of the environment requires humans to solve problems collaboratively. The aim of this study was to investigate the neural mechanism of social navigation in group problem-solving situations. A novel cooperative task was designed in which dyadic participants assumed the role of an opera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306364/ https://www.ncbi.nlm.nih.gov/pubmed/37261919 http://dx.doi.org/10.1093/scan/nsad031 |
_version_ | 1785065920381583360 |
---|---|
author | Zhou, Song Yang, Huaqi Liu, Tao Yang, Haibo |
author_facet | Zhou, Song Yang, Huaqi Liu, Tao Yang, Haibo |
author_sort | Zhou, Song |
collection | PubMed |
description | The complexity of the environment requires humans to solve problems collaboratively. The aim of this study was to investigate the neural mechanism of social navigation in group problem-solving situations. A novel cooperative task was designed in which dyadic participants assumed the role of an operator or a navigator with different skills and knowledge and worked together to complete the task. Using functional near-infrared spectroscopy–based hyperscanning, we found stronger interbrain neural synchronization of the right temporoparietal junction (rTPJ) between dyads when the operator received instructions from the navigator rather than from a computer. The functional connections between the rTPJ and the other brain areas indicated the involvement of the mirror neural system during the task. Further directional analysis using Granger causality analysis revealed a flow of information from the temporal to the parietal and then to the pre-motor cortex in the operator’s brain. These findings provide empirical evidence for the neural mechanism of social navigation and highlight the importance of the rTPJ for communication and joint attention in uncertain group problem-solving situations. |
format | Online Article Text |
id | pubmed-10306364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103063642023-06-29 Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation Zhou, Song Yang, Huaqi Liu, Tao Yang, Haibo Soc Cogn Affect Neurosci Original Manuscript The complexity of the environment requires humans to solve problems collaboratively. The aim of this study was to investigate the neural mechanism of social navigation in group problem-solving situations. A novel cooperative task was designed in which dyadic participants assumed the role of an operator or a navigator with different skills and knowledge and worked together to complete the task. Using functional near-infrared spectroscopy–based hyperscanning, we found stronger interbrain neural synchronization of the right temporoparietal junction (rTPJ) between dyads when the operator received instructions from the navigator rather than from a computer. The functional connections between the rTPJ and the other brain areas indicated the involvement of the mirror neural system during the task. Further directional analysis using Granger causality analysis revealed a flow of information from the temporal to the parietal and then to the pre-motor cortex in the operator’s brain. These findings provide empirical evidence for the neural mechanism of social navigation and highlight the importance of the rTPJ for communication and joint attention in uncertain group problem-solving situations. Oxford University Press 2023-05-30 /pmc/articles/PMC10306364/ /pubmed/37261919 http://dx.doi.org/10.1093/scan/nsad031 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Manuscript Zhou, Song Yang, Huaqi Liu, Tao Yang, Haibo Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title | Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title_full | Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title_fullStr | Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title_full_unstemmed | Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title_short | Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
title_sort | bidirectional understanding and cooperation: interbrain neural synchronization during social navigation |
topic | Original Manuscript |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306364/ https://www.ncbi.nlm.nih.gov/pubmed/37261919 http://dx.doi.org/10.1093/scan/nsad031 |
work_keys_str_mv | AT zhousong bidirectionalunderstandingandcooperationinterbrainneuralsynchronizationduringsocialnavigation AT yanghuaqi bidirectionalunderstandingandcooperationinterbrainneuralsynchronizationduringsocialnavigation AT liutao bidirectionalunderstandingandcooperationinterbrainneuralsynchronizationduringsocialnavigation AT yanghaibo bidirectionalunderstandingandcooperationinterbrainneuralsynchronizationduringsocialnavigation |