Cargando…

Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo

RNA–protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Varma, Eshita, Burghaus, Jana, Schwarzl, Thomas, Sekaran, Thileepan, Gupta, Parul, Górska, Agnieszka A., Hofmann, Christoph, Stroh, Claudia, Jürgensen, Lonny, Kamuf-Schenk, Verena, Li, Xue, Medert, Rebekka, Leuschner, Florian, Kmietczyk, Vivien, Freichel, Marc, Katus, Hugo A., Hentze, Matthias W., Frey, Norbert, Völkers, Mirko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307726/
https://www.ncbi.nlm.nih.gov/pubmed/37378715
http://dx.doi.org/10.1007/s00395-023-00996-1
_version_ 1785066097579393024
author Varma, Eshita
Burghaus, Jana
Schwarzl, Thomas
Sekaran, Thileepan
Gupta, Parul
Górska, Agnieszka A.
Hofmann, Christoph
Stroh, Claudia
Jürgensen, Lonny
Kamuf-Schenk, Verena
Li, Xue
Medert, Rebekka
Leuschner, Florian
Kmietczyk, Vivien
Freichel, Marc
Katus, Hugo A.
Hentze, Matthias W.
Frey, Norbert
Völkers, Mirko
author_facet Varma, Eshita
Burghaus, Jana
Schwarzl, Thomas
Sekaran, Thileepan
Gupta, Parul
Górska, Agnieszka A.
Hofmann, Christoph
Stroh, Claudia
Jürgensen, Lonny
Kamuf-Schenk, Verena
Li, Xue
Medert, Rebekka
Leuschner, Florian
Kmietczyk, Vivien
Freichel, Marc
Katus, Hugo A.
Hentze, Matthias W.
Frey, Norbert
Völkers, Mirko
author_sort Varma, Eshita
collection PubMed
description RNA–protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-023-00996-1.
format Online
Article
Text
id pubmed-10307726
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-103077262023-06-30 Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo Varma, Eshita Burghaus, Jana Schwarzl, Thomas Sekaran, Thileepan Gupta, Parul Górska, Agnieszka A. Hofmann, Christoph Stroh, Claudia Jürgensen, Lonny Kamuf-Schenk, Verena Li, Xue Medert, Rebekka Leuschner, Florian Kmietczyk, Vivien Freichel, Marc Katus, Hugo A. Hentze, Matthias W. Frey, Norbert Völkers, Mirko Basic Res Cardiol Original Contribution RNA–protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-023-00996-1. Springer Berlin Heidelberg 2023-06-28 2023 /pmc/articles/PMC10307726/ /pubmed/37378715 http://dx.doi.org/10.1007/s00395-023-00996-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Contribution
Varma, Eshita
Burghaus, Jana
Schwarzl, Thomas
Sekaran, Thileepan
Gupta, Parul
Górska, Agnieszka A.
Hofmann, Christoph
Stroh, Claudia
Jürgensen, Lonny
Kamuf-Schenk, Verena
Li, Xue
Medert, Rebekka
Leuschner, Florian
Kmietczyk, Vivien
Freichel, Marc
Katus, Hugo A.
Hentze, Matthias W.
Frey, Norbert
Völkers, Mirko
Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title_full Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title_fullStr Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title_full_unstemmed Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title_short Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo
title_sort translational control of ybx1 expression regulates cardiac function in response to pressure overload in vivo
topic Original Contribution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307726/
https://www.ncbi.nlm.nih.gov/pubmed/37378715
http://dx.doi.org/10.1007/s00395-023-00996-1
work_keys_str_mv AT varmaeshita translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT burghausjana translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT schwarzlthomas translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT sekaranthileepan translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT guptaparul translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT gorskaagnieszkaa translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT hofmannchristoph translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT strohclaudia translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT jurgensenlonny translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT kamufschenkverena translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT lixue translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT medertrebekka translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT leuschnerflorian translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT kmietczykvivien translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT freichelmarc translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT katushugoa translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT hentzematthiasw translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT freynorbert translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo
AT volkersmirko translationalcontrolofybx1expressionregulatescardiacfunctioninresponsetopressureoverloadinvivo