Cargando…
Deep learning-aided extraction of outer aortic surface from CT angiography scans of patients with Stanford type B aortic dissection
BACKGROUND: Guidelines recommend that aortic dimension measurements in aortic dissection should include the aortic wall. This study aimed to evaluate two-dimensional (2D)- and three-dimensional (3D)-based deep learning approaches for extraction of outer aortic surface in computed tomography angiogra...
Autores principales: | Kesävuori, Risto, Kaseva, Tuomas, Salli, Eero, Raivio, Peter, Savolainen, Sauli, Kangasniemi, Marko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307760/ https://www.ncbi.nlm.nih.gov/pubmed/37380806 http://dx.doi.org/10.1186/s41747-023-00342-z |
Ejemplares similares
-
3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
por: Öman, Olli, et al.
Publicado: (2019) -
Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study
por: Mäkelä, Teemu, et al.
Publicado: (2022) -
Long-term outcomes after ascending aortic replacement and aortic root replacement for type A aortic dissection
por: Jormalainen, Mikko, et al.
Publicado: (2021) -
Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study
por: Vainio, Tuomas, et al.
Publicado: (2021) -
False positive computed tomographic angiography for Stanford type A aortic dissection
por: Bandali, Murad F., et al.
Publicado: (2015)