Cargando…

The mechanism and performance of rock breakage by undercutting disc cutter with advanced slotting

To study the mechanism and performance of rock breakage by an undercutting disc cutter with advanced slotting, a three-dimensional numerical model of rock cutting by a disc cutter with advanced slotting assistance was established based on the discrete element method. The parallel bond constitutive m...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Hongxiang, Zhang, Xiaodi, Zhao, Huihe, Liu, Zenghui, Wang, Yongxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307829/
https://www.ncbi.nlm.nih.gov/pubmed/37380649
http://dx.doi.org/10.1038/s41598-023-37576-1
Descripción
Sumario:To study the mechanism and performance of rock breakage by an undercutting disc cutter with advanced slotting, a three-dimensional numerical model of rock cutting by a disc cutter with advanced slotting assistance was established based on the discrete element method. The parallel bond constitutive model was selected to describe the micromechanical properties of rock. The correctness of the established numerical model is verified through rock breakage experiments, and the rock cutting process by the disc cutter was analyzed by a combination of the force chain and crack distribution. The influencing factors, such as advanced slotting depth, cutting thickness, rock strength, and cutter rotation speed, on rock cutting performance were investigated. The results show that a compact zone is gradually formed between the rock and disc cutter at the beginning, then a large number of microscopic tensile and shear cracks in the compact zone due to micro failure of rock are formed; the subsequent main rock fragment is mainly caused by tensile failure; advanced slotting can reduce the rock bearing capacity and bending resistance, the rock above the advanced slotting fractured easily due to its lower bending resistance, and the volume compact zone is relatively small. When the advanced slotting depth is equal to 12.5 mm, the propulsive force and specific energy consumption of rock cutting by the disc cutter are reduced by 61.6% and 16.5%, respectively. The propulsive force and specific energy consumption increase as the rock strength increases, but they tend to close when the rock strength is greater than 80 MPa, which indicates that advanced slotting assistance is more suitable for hard rock. The results obtained in this paper can provide the operating parameters determination under different factors to some extent of the undercutting disc cutter in a pre-cut condition, which further improve the rock breaking performance of mechanized cutter.