Cargando…
Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions
Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk...
Autores principales: | Tran, Nhat Quang, Goel, Gautam, Pudota, Nirmala, Suesserman, Michael, Helms, John, Lasaga, Daniel, Olson, Dan, Bowen, Edward, Bhattacharya, Sanmitra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307854/ https://www.ncbi.nlm.nih.gov/pubmed/37380704 http://dx.doi.org/10.1038/s41598-023-37477-3 |
Ejemplares similares
-
Procedure code overutilization detection from healthcare claims using unsupervised deep learning methods
por: Suesserman, Michael, et al.
Publicado: (2023) -
Leveraging Advanced Data Analytics to Predict the Risk of All-Cause Seven-Day Emergency Readmissions
por: Aldhoayan, Mohammed D, et al.
Publicado: (2022) -
Engagement with Health Agencies on Twitter
por: Bhattacharya, Sanmitra, et al.
Publicado: (2014) -
Social media engagement analysis of U.S. Federal health agencies on Facebook
por: Bhattacharya, Sanmitra, et al.
Publicado: (2017) -
MeSH: a window into full text for document summarization
por: Bhattacharya, Sanmitra, et al.
Publicado: (2011)