Cargando…
Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants
Machine learning-based pathogenicity prediction helps interpret rare missense variants of BRCA1 and BRCA2, which are associated with hereditary cancers. Recent studies have shown that classifiers trained using variants of a specific gene or a set of genes related to a particular disease perform bett...
Autores principales: | Kang, Moonjong, Kim, Seonhwa, Lee, Da-Bin, Hong, Changbum, Hwang, Kyu-Baek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307865/ https://www.ncbi.nlm.nih.gov/pubmed/37380723 http://dx.doi.org/10.1038/s41598-023-37698-6 |
Ejemplares similares
-
Prediction of the functional impact of missense variants in BRCA1 and BRCA2 with BRCA-ML
por: Hart, Steven N., et al.
Publicado: (2020) -
Systematic misclassification of missense variants in BRCA1 and BRCA2 “coldspots”
por: Dines, Jennifer N., et al.
Publicado: (2020) -
Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants
por: Khandakji, Mohannad N., et al.
Publicado: (2022) -
Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic
por: Ahlborn, Lise B., et al.
Publicado: (2015) -
Functional Impact of Missense Variants in BRCA1 Predicted by Supervised Learning
por: Karchin, Rachel, et al.
Publicado: (2007)