Cargando…
Glazes induced degradation of tea catechins
In present work, the degradation behavior of tea catechins on various commercial glazes was elucidated for the first time. Four kinds of Japanese typical commercial glaze powders (Oribe /Namako/Irabo /Toumei) based on Fe/Co /Cu /Ti oxides were utilized and deposited on ceramic tiles. Tea solution ex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307877/ https://www.ncbi.nlm.nih.gov/pubmed/37380665 http://dx.doi.org/10.1038/s41598-023-37480-8 |
Sumario: | In present work, the degradation behavior of tea catechins on various commercial glazes was elucidated for the first time. Four kinds of Japanese typical commercial glaze powders (Oribe /Namako/Irabo /Toumei) based on Fe/Co /Cu /Ti oxides were utilized and deposited on ceramic tiles. Tea solution extracted from green tea leaves at 80 °C and then utilized for the examination of degradation behavior with glazes to meet a nearly identical condition in human daily tea drinking with ceramicwares. It was found that the degradation of tea catechins significantly dependent on the chemical structure of glazes, that is: Fe/Cu/Co oxides contained glazes can promote the degradation of epigallocatechin, epicatechin, epigallocatechin gallate and epicatechin gallate, while Ti oxide contained glaze stimulated the degradation of epigallocatechin gallate selectively. Coloring pigments were produced in degraded tea solutions, whose color shows glaze dependent property. We presume that these color pigments can be assigned as oxytheotannin, especially theaflavin and its oxides as well as thearubigins, that produced through the polymerization of intermediate free radical catechin and/or the ortho-quinone generated by catalytic effect of glaze oxides worked as Lewis’s acids. The specific function of glazes on degradation of catechins discovered here not only provides principal information for design and development of functional materials but also bring new impacts on daily tea drinking and long-term human health-related issues. |
---|