Cargando…
Associations of inflammation with neuropsychological symptom cluster in patients with Head and neck cancer: A longitudinal study
PURPOSE: Head and neck cancer (HNC) patients may experience multiple co-occurring neuropsychological symptoms (NPS) cluster, including fatigue, depression, pain, sleep disturbance, and cognitive impairment. While inflammation has been attributed as a key mechanism for some of these symptoms, its ass...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308212/ https://www.ncbi.nlm.nih.gov/pubmed/37396338 http://dx.doi.org/10.1016/j.bbih.2023.100649 |
Sumario: | PURPOSE: Head and neck cancer (HNC) patients may experience multiple co-occurring neuropsychological symptoms (NPS) cluster, including fatigue, depression, pain, sleep disturbance, and cognitive impairment. While inflammation has been attributed as a key mechanism for some of these symptoms, its association with the NPS as a cluster of symptoms is unknown. Thus, the aim of this study was to examine the association between peripheral inflammation and NPS cluster among HNC patients over cancer treatment (radiotherapy with or without chemotherapy). METHODS: HNC patients were recruited and followed at pre-treatment, end of treatment, three months and one-year post-treatment. Plasma inflammatory markers, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNFA), soluble tumor necrosis factor receptor-2 (sTNFR2), interleukin-1 beta (IL1-β), interleukin-6 (IL-6), interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), and interleukin-1 receptor antagonist (IL-1RA) and patient-reported NPS cluster were collected at the 4 time points. Associations between inflammatory markers and the NPS cluster were analyzed using linear mixed-effects models and generalized estimating equations (GEE) models controlling covariates. RESULTS: 147 HNC patients were eligible for analysis. 56% of the patients received chemoradiotherapy as treatment. The highest NPS cluster score was reported at the end of treatment, which gradually decreased over time. An increase in inflammatory markers including CRP, sTNFR2, IL-6 and IL-1RA was associated with higher continuous NPS cluster scores (p<0.001, p = 0.003, p<0.001, p<0.001; respectively). GEE further confirmed that patients with at least two moderate symptoms had elevated sTNFR2, IL-6, and IL-1RA (p = 0.017, p = 0.038, p = 0.008; respectively). Notably, this positive association between NPS cluster and inflammatory markers was still significant at one-year post-treatment for CRP (p = 0.001), sTNFR2 (p = 0.006), and IL-1RA (p = 0.043). CONCLUSIONS: Most HNC patients experienced NPS clusters over time, especially immediately after the end of treatment. Elevated inflammation, as represented by inflammatory markers, was strongly associated with worse NPS cluster over time; this trend was also notable at one-year post-treatment. Our findings suggest that peripheral inflammation plays a pivotal role in the NPS cluster over cancer treatment, including long-term follow-ups. Interventions on reducing peripheral inflammation may contribute to alleviating the NPS cluster in cancer patients. |
---|