Cargando…

Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir

[Image: see text] From exploration to production, the permeability of reservoir rocks is essential for various stages of all types of hydrocarbon field development. In the absence of costly reservoir rock samples, having a reliable correlation to predict rock permeability in the zone(s) of interest...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lidong, Guo, Yuanling, Mohammadian, Erfan, Hadavimoghaddam, Fahimeh, Jafari, Mehdi, Kheirollahi, Mahdi, Rozhenko, Alexei, Liu, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308393/
https://www.ncbi.nlm.nih.gov/pubmed/37396230
http://dx.doi.org/10.1021/acsomega.3c01927
_version_ 1785066235309850624
author Zhao, Lidong
Guo, Yuanling
Mohammadian, Erfan
Hadavimoghaddam, Fahimeh
Jafari, Mehdi
Kheirollahi, Mahdi
Rozhenko, Alexei
Liu, Bo
author_facet Zhao, Lidong
Guo, Yuanling
Mohammadian, Erfan
Hadavimoghaddam, Fahimeh
Jafari, Mehdi
Kheirollahi, Mahdi
Rozhenko, Alexei
Liu, Bo
author_sort Zhao, Lidong
collection PubMed
description [Image: see text] From exploration to production, the permeability of reservoir rocks is essential for various stages of all types of hydrocarbon field development. In the absence of costly reservoir rock samples, having a reliable correlation to predict rock permeability in the zone(s) of interest is crucial. To predict permeability conventionally, petrophysical rock typing is done. This method divides the reservoir into zones of similar petrophysical properties, and the permeability correlation for each zone is independently developed. The challenge of this approach is that the success depends upon the reservoir’s complexity and heterogeneity and the methods and parameters used for rock typing. As a result, in the case of heterogeneous reservoirs, conventional rock typing methods and indices fail to predict the permeability accurately. The target area is a heterogeneous carbonate reservoir in southwestern Iran with a permeability range of 0.1–127.0 md. In this work, two approaches were used. First, based on permeability, porosity, the radius of pore throats at mercury saturation of 35% (r35), and connate water saturation (S(wc)) as inputs of K-nearest neighbors, the reservoir was classified into two petrophysical zones, and then, permeability for each zone was estimated. Due to the heterogeneous nature of the formation, the predicted permeability results needed to be more accurate. In the second part, we applied novel machine learning algorithms, modified group modeling data handling (GMDH), and genetic programming (GP) to develop one universal permeability equation for the whole reservoir of interest as a function of porosity, the radius of pore throats at mercury saturation of 35% (r35), and connate water saturation (S(wc)). The novelty of the current approach is that despite being universal, the models developed using GP and GMDH performed substantially better than zone-specific permeability, index-based empirical, or data-driven models used in the literature, such as FZI and Winland. The predicted permeability using GMDH and GP resulted in accurate prediction with R(2) of 0.99 and 0.95, respectively, in the heterogeneous reservoir of interest. Moreover, as this study aimed to develop an explainable model, different parameter importance analyses were also applied to the developed permeability models, and r35 was found to be the most impactful feature.
format Online
Article
Text
id pubmed-10308393
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103083932023-06-30 Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir Zhao, Lidong Guo, Yuanling Mohammadian, Erfan Hadavimoghaddam, Fahimeh Jafari, Mehdi Kheirollahi, Mahdi Rozhenko, Alexei Liu, Bo ACS Omega [Image: see text] From exploration to production, the permeability of reservoir rocks is essential for various stages of all types of hydrocarbon field development. In the absence of costly reservoir rock samples, having a reliable correlation to predict rock permeability in the zone(s) of interest is crucial. To predict permeability conventionally, petrophysical rock typing is done. This method divides the reservoir into zones of similar petrophysical properties, and the permeability correlation for each zone is independently developed. The challenge of this approach is that the success depends upon the reservoir’s complexity and heterogeneity and the methods and parameters used for rock typing. As a result, in the case of heterogeneous reservoirs, conventional rock typing methods and indices fail to predict the permeability accurately. The target area is a heterogeneous carbonate reservoir in southwestern Iran with a permeability range of 0.1–127.0 md. In this work, two approaches were used. First, based on permeability, porosity, the radius of pore throats at mercury saturation of 35% (r35), and connate water saturation (S(wc)) as inputs of K-nearest neighbors, the reservoir was classified into two petrophysical zones, and then, permeability for each zone was estimated. Due to the heterogeneous nature of the formation, the predicted permeability results needed to be more accurate. In the second part, we applied novel machine learning algorithms, modified group modeling data handling (GMDH), and genetic programming (GP) to develop one universal permeability equation for the whole reservoir of interest as a function of porosity, the radius of pore throats at mercury saturation of 35% (r35), and connate water saturation (S(wc)). The novelty of the current approach is that despite being universal, the models developed using GP and GMDH performed substantially better than zone-specific permeability, index-based empirical, or data-driven models used in the literature, such as FZI and Winland. The predicted permeability using GMDH and GP resulted in accurate prediction with R(2) of 0.99 and 0.95, respectively, in the heterogeneous reservoir of interest. Moreover, as this study aimed to develop an explainable model, different parameter importance analyses were also applied to the developed permeability models, and r35 was found to be the most impactful feature. American Chemical Society 2023-06-12 /pmc/articles/PMC10308393/ /pubmed/37396230 http://dx.doi.org/10.1021/acsomega.3c01927 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Zhao, Lidong
Guo, Yuanling
Mohammadian, Erfan
Hadavimoghaddam, Fahimeh
Jafari, Mehdi
Kheirollahi, Mahdi
Rozhenko, Alexei
Liu, Bo
Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title_full Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title_fullStr Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title_full_unstemmed Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title_short Modeling Permeability Using Advanced White-Box Machine Learning Technique: Application to a Heterogeneous Carbonate Reservoir
title_sort modeling permeability using advanced white-box machine learning technique: application to a heterogeneous carbonate reservoir
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308393/
https://www.ncbi.nlm.nih.gov/pubmed/37396230
http://dx.doi.org/10.1021/acsomega.3c01927
work_keys_str_mv AT zhaolidong modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT guoyuanling modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT mohammadianerfan modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT hadavimoghaddamfahimeh modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT jafarimehdi modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT kheirollahimahdi modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT rozhenkoalexei modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir
AT liubo modelingpermeabilityusingadvancedwhiteboxmachinelearningtechniqueapplicationtoaheterogeneouscarbonatereservoir