Cargando…

CMKLR1 Antagonist Alpha-NETA Protects against Diabetic Nephropathy in Mice

INTRODUCTION: Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect o...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Zining, Wang, Xueyi, Zhu, Qing, Wang, Huili, Li, Bing, Pang, Xinxin, Han, Jiarui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: S. Karger AG 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308536/
https://www.ncbi.nlm.nih.gov/pubmed/37231814
http://dx.doi.org/10.1159/000530763
Descripción
Sumario:INTRODUCTION: Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect of a CMKLR1 antagonist, 2-(anaphthoyl)ethyltrimethylammonium iodide (α-NETA), on DN. METHODS: To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks. RESULTS: α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN. CONCLUSION: In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.