Cargando…
Novel Type-II Heterojunction Binary Composite (CdS/AgI) with Outstanding Visible Light-Driven Photocatalytic Performances toward Methyl Orange and Tetracycline Hydrochloride
[Image: see text] In this study, an effective type-II heterojunction CdS/AgI binary composite was constructed by an in situ precipitation approach. To validate the successful formation of heterojunction between AgI and CdS photocatalysts, the synthesized binary composites were characterized by vario...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308551/ https://www.ncbi.nlm.nih.gov/pubmed/37396286 http://dx.doi.org/10.1021/acsomega.3c01517 |
Sumario: | [Image: see text] In this study, an effective type-II heterojunction CdS/AgI binary composite was constructed by an in situ precipitation approach. To validate the successful formation of heterojunction between AgI and CdS photocatalysts, the synthesized binary composites were characterized by various analytical techniques. UV–vis diffuse-reflectance spectroscopy (UV–vis DRS) revealed that heterojunction formation led to a red shift in the absorbance spectra of the CdS/AgI binary composite. The optimized 20AgI/CdS binary composite showed a least intense photoluminescence (PL) peak indicating highly improved charge carrier (e(–)/h(+) pairs) separation efficiency. The photocatalytic efficiency of the synthesized materials was assessed based on the degradation of methyl orange (MO) and tetracycline hydrochloride (TCH) in the presence of visible light. Compared to bare photocatalysts and other binary composites, the 20AgI/CdS binary composite showed the highest photocatalytic degradation performances. Additionally, the trapping studies showed that superoxide radical anion (O(2)(•–)) was the most dominant active species involved in photodegradation processes. Based on the results of active species trapping studies, a mechanism was proposed to describe the formation of type-II heterojunctions for CdS/AgI binary composite. Overall, the synthesized binary composite has tremendous promise for environmental remediation due to its straightforward synthesis approach and excellent photocatalytic efficacy. |
---|