Cargando…
Machine learning applications on neonatal sepsis treatment: a scoping review
INTRODUCTION: Neonatal sepsis is a major cause of health loss and mortality worldwide. Without proper treatment, neonatal sepsis can quickly develop into multisystem organ failure. However, the signs of neonatal sepsis are non-specific, and treatment is labour-intensive and expensive. Moreover, anti...
Autores principales: | O’Sullivan, Colleen, Tsai, Daniel Hsiang-Te, Wu, Ian Chang-Yen, Boselli, Emanuela, Hughes, Carmel, Padmanabhan, Deepak, Hsia, Yingfen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308703/ https://www.ncbi.nlm.nih.gov/pubmed/37386442 http://dx.doi.org/10.1186/s12879-023-08409-3 |
Ejemplares similares
-
Systematic review of carbapenem-resistant Enterobacteriaceae causing neonatal sepsis in China
por: Ding, Yijun, et al.
Publicado: (2019) -
Machine Learning Approaches to Predict In-Hospital Mortality among Neonates with Clinically Suspected Sepsis in the Neonatal Intensive Care Unit
por: Hsu, Jen-Fu, et al.
Publicado: (2021) -
Supporting clinical decision making in the emergency department for paediatric patients using machine learning: A scoping review protocol
por: Leonard, Fiona, et al.
Publicado: (2023) -
Bioinformatic Analysis and Machine Learning Methods in Neonatal Sepsis: Identification of Biomarkers and Immune Infiltration
por: Jiang, Zhou, et al.
Publicado: (2023) -
Clinical prediction models to diagnose neonatal sepsis: a scoping review protocol
por: Neal, Samuel R, et al.
Publicado: (2020)