Cargando…
Cancer survival prediction by learning comprehensive deep feature representation for multiple types of genetic data
BACKGROUND: Cancer is one of the leading death causes around the world. Accurate prediction of its survival time is significant, which can help clinicians make appropriate therapeutic schemes. Cancer data can be characterized by varied molecular features, clinical behaviors and morphological appeara...
Autores principales: | Hao, Yaru, Jing, Xiao-Yuan, Sun, Qixing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308712/ https://www.ncbi.nlm.nih.gov/pubmed/37380946 http://dx.doi.org/10.1186/s12859-023-05392-z |
Ejemplares similares
-
Joint learning sample similarity and correlation representation for cancer survival prediction
por: Hao, Yaru, et al.
Publicado: (2022) -
A Comprehensive Comparative Analysis of Deep Learning Based Feature Representations for Molecular Taste Prediction
por: Song, Yu, et al.
Publicado: (2023) -
Brain Tumor Segmentation Based on Deep Learning’s Feature Representation
por: Aboussaleh, Ilyasse, et al.
Publicado: (2021) -
Identify Bitter Peptides by Using Deep Representation Learning Features
por: Jiang, Jici, et al.
Publicado: (2022) -
Identification of plant vacuole proteins by exploiting deep representation learning features
por: Jiao, Shihu, et al.
Publicado: (2022)