Cargando…
Knowledge Distillation Facilitates the Lightweight and Efficient Plant Diseases Detection Model
Plant disease diagnosis in time can inhibit the spread of the disease and prevent a large-scale drop in production, which benefits food production. Object detection-based plant disease diagnosis methods have attracted widespread attention due to their accuracy in classifying and locating diseases. H...
Autores principales: | Huang, Qianding, Wu, Xingcai, Wang, Qi, Dong, Xinyu, Qin, Yongbin, Wu, Xue, Gao, Yangyang, Hao, Gefei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308957/ https://www.ncbi.nlm.nih.gov/pubmed/37396495 http://dx.doi.org/10.34133/plantphenomics.0062 |
Ejemplares similares
-
PDDD-PreTrain: A Series of Commonly Used Pre-Trained Models Support Image-Based Plant Disease Diagnosis
por: Dong, Xinyu, et al.
Publicado: (2023) -
Lightweight Depth Completion Network with Local Similarity-Preserving Knowledge Distillation
por: Jeong, Yongseop, et al.
Publicado: (2022) -
An Efficient Approach Using Knowledge Distillation Methods to Stabilize Performance in a Lightweight Top-Down Posture Estimation Network
por: Park, Changhyun, et al.
Publicado: (2021) -
Communication-efficient federated learning via knowledge distillation
por: Wu, Chuhan, et al.
Publicado: (2022) -
A Lightweight Fusion Distillation Network for Image Deblurring and Deraining †
por: Zhang, Yanni, et al.
Publicado: (2021)